GARbro-mirror/ArcFormats/CsWare/ImageGDT.cs
morkt 1b585ea30e updated formats.
(PICT): fixed 16bpp images.
(GDT): added image format.
(DXR): tweaks to recognizing DXR inside exe files.
(NSA): recognize mp3 files named as nsa.
(TLZ): added ContainedFormats.
(WrapSingleFileAchive): class that represents single file as an archive.
(DesertCgOPener): Software House Parsley archive.
(Triangle.RleReader): utilize UnpackV2, replaced BinaryReader with IBinaryStream.
2023-10-11 18:38:23 +04:00

570 lines
21 KiB
C#

//! \file ImageGDT.cs
//! \date 2023 Sep 29
//! \brief AGS engine image format (PC-98).
//
// Copyright (C) 2023 by morkt
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//
using GameRes.Utility;
using System;
using System.ComponentModel.Composition;
using System.IO;
using System.Windows.Media;
using System.Windows.Media.Imaging;
namespace GameRes.Formats.CsWare
{
internal class GdtMetaData : ImageMetaData
{
public byte Flags;
public bool HasPalette => (Flags & 0x80) != 0;
public bool IsDouble => (Flags & 0x40) == 0;
}
[Export(typeof(ImageFormat))]
public class GdtFormat : ImageFormat
{
public override string Tag => "GDT";
public override string Description => "AGS engine image format";
public override uint Signature => 0x314144; // 'DA1'
public override ImageMetaData ReadMetaData (IBinaryStream file)
{
var header = file.ReadHeader (16);
var info = new GdtMetaData {
OffsetX = header[8] << 3,
OffsetY = header.ToUInt16 (0xA),
Width = (uint)header[9] << 3,
Height = header.ToUInt16 (0xC),
BPP = 4,
Flags = header[0xF],
};
return info;
}
public override ImageData Read (IBinaryStream file, ImageMetaData info)
{
var reader = new GdtReader (file, (GdtMetaData)info);
return reader.Unpack();
}
public override void Write (Stream file, ImageData image)
{
throw new System.NotImplementedException ("GdtFormat.Write not implemented");
}
}
internal class GdtReader
{
IBinaryStream m_input;
GdtMetaData m_info;
int m_stride;
int m_output_stride;
public BitmapPalette Palette { get; private set; }
public GdtReader (IBinaryStream file, GdtMetaData info)
{
m_input = file;
m_info = info;
m_stride = info.iWidth >> 3;
m_output_stride = info.iWidth >> 1;
}
byte[][] m_planes;
public ImageData Unpack ()
{
m_input.Position = 0x10;
if (m_info.HasPalette)
{
Palette = ReadPalette();
}
var packed_sizes = new ushort[4];
for (int i = 0; i < 4; ++i)
packed_sizes[i] = m_input.ReadUInt16();
long plane_pos = m_input.Position;
int plane_size = m_stride * m_info.iHeight;
m_planes = new byte[][] {
new byte[plane_size], new byte[plane_size], new byte[plane_size], new byte[plane_size],
};
Action<int> UnpackPlane = UnpackSingle;
if (m_info.IsDouble)
UnpackPlane = UnpackDouble;
for (int i = 0; i < 4; ++i)
{
m_input.Position = plane_pos;
plane_pos += packed_sizes[i];
UnpackPlane (i);
}
var pixels = new byte[m_output_stride * m_info.iHeight];
FlattenPlanes (pixels);
PixelFormat format;
if (null == Palette)
format = PixelFormats.Gray4;
else
format = PixelFormats.Indexed4;
return ImageData.Create (m_info, format, Palette, pixels, m_output_stride);
}
void UnpackSingle (int plane_index)
{
int h = m_info.iHeight;
int w = m_stride;
int dst = 0;
while (w --> 0)
{
Unpack8Line (plane_index, dst);
dst += h;
}
}
void UnpackDouble (int plane_index)
{
var output = m_planes[plane_index];
int h = m_info.iHeight;
int width = m_stride;
int dst = 0;
if ((m_info.OffsetX & 8) != 0)
{
Unpack8Line (plane_index, dst);
--width;
dst += h;
}
if ((m_input.Position & 1) != 0)
m_input.Seek (1, SeekOrigin.Current);
if (1 == width)
{
Unpack8Line (plane_index, dst);
return;
}
while (m_input.PeekByte() != -1)
{
byte op = m_input.ReadUInt8();
byte ctl = m_input.ReadUInt8();
if (ctl < 0x80)
{
if (0 == ctl)
continue;
ushort w = (ushort)(((op & 0xF) << 8 | (op & 0xF0) >> 4) * 0x11);
int count = ctl;
Fill (output, dst , count, w);
Fill (output, dst+h, count, w);
dst += count * 2;
}
else if (ctl < 0xC0)
{
int count = ctl & 0x3F;
int w = op & 0xF | (op & 0xF0) << 4;
uint d = (uint)(w | (w & 0x0303) << 18 | (w & 0x0C0C) << 14);
d = Binary.BigEndian (d | d << 4);
Fill (output, dst , count, d);
Fill (output, dst+h, count, d);
dst += count * 4;
}
else if (ctl < 0xD0)
{
byte b = (byte)((ctl & 0xF) | ctl << 4);
int count = op;
Fill (output, dst , count, b);
Fill (output, dst+h, count, b);
dst += count;
}
else if (ctl < 0xD2)
{
int count = (ctl & 1) << 8 | op;
while (count --> 0)
{
output[dst ] = m_input.ReadUInt8();
output[dst+h] = m_input.ReadUInt8();
}
}
else if (0xD2 == ctl)
{
dst += op;
}
else if (ctl < 0xF3)
{
int count = op;
int off = 0;
switch (ctl)
{
case 0xD3: off = 16; break;
case 0xD4: off = 12; break;
case 0xD5: off = 8; break;
case 0xD6: off = 4; break;
case 0xD7: off = 2; break;
case 0xD8: off = 1; break;
case 0xD9: off = h * 2 + 8; break;
case 0xDA: off = h * 2 + 4; break;
case 0xDB: off = h * 2 + 2; break;
case 0xDC: off = h * 2 + 1; break;
case 0xDD: off = h * 2; break;
case 0xDE: off = h * 2 - 1; break;
case 0xDF: off = h * 2 - 2; break;
case 0xE0: off = h * 2 - 4; break;
case 0xE1: off = h * 2 - 8; break;
case 0xE2: off = h * 4 + 8; break;
case 0xE3: off = h * 4 + 4; break;
case 0xE4: off = h * 4 + 2; break;
case 0xE5: off = h * 4 + 1; break;
case 0xE6: off = h * 4; break;
case 0xE7: off = h * 4 - 1; break;
case 0xE8: off = h * 4 - 2; break;
case 0xE9: off = h * 4 - 4; break;
case 0xEA: off = h * 4 - 8; break;
case 0xEB: off = h * 6 + 4; break;
case 0xEC: off = h * 6 + 2; break;
case 0xED: off = h * 6 + 1; break;
case 0xEE: off = h * 6; break;
case 0xEF: off = h * 6 - 1; break;
case 0xF0: off = h * 6 - 2; break;
case 0xF1: off = h * 6 - 4; break;
case 0xF2: off = h * 8; break;
}
Binary.CopyOverlapped (output, dst-off, dst, count);
Binary.CopyOverlapped (output, dst-off+h, dst+h, count);
dst += count;
}
else if (ctl < 0xFC)
{
int count = op;
var source = m_planes[(ctl - 0xF3) % 3];
if (ctl < 0xF6)
{
Buffer.BlockCopy (source, dst, output, dst, count);
Buffer.BlockCopy (source, dst+h, output, dst+h, count);
dst += count;
}
else if (ctl > 0xF8)
{
var source1 = m_planes[ctl & 1];
var source2 = m_planes[ctl & 2];
while (count --> 0)
{
output[dst] = (byte)(source1[dst] & source2[dst]);
output[dst+h] = (byte)(source1[dst+h] & source2[dst+h]);
++dst;
}
}
else
{
while (count --> 0)
{
output[dst] = (byte)~source[dst];
output[dst+h] = (byte)~source[dst+h];
++dst;
}
}
}
else if (0xFC == ctl)
{
int count = op;
byte b = m_input.ReadUInt8();
Fill (output, dst , count, b);
Fill (output, dst+h, count, b);
dst += count;
}
else if (0xFD == ctl)
{
if (op < 0x80)
{
int count = op;
ushort w = m_input.ReadUInt16();
Fill (output, dst , count, w);
Fill (output, dst+h, count, w);
dst += count * 2;
}
else
{
int count = op & 0x7F;
ushort w1 = m_input.ReadUInt16();
ushort w2 = m_input.ReadUInt16();
Fill (output, dst , count, (ushort)(w1 << 8 | w2 & 0xFF));
Fill (output, dst+h, count, (ushort)(w1 & 0xFF | w2 >> 8));
dst += count * 2;
}
}
else if (0xFE == ctl)
{
int count = op & 0x3F;
if (op < 0x80)
{
byte b0 = m_input.ReadUInt8();
byte b1 = m_input.ReadUInt8();
int d = b1 | b0 << 16;
d = d & 0x0F000F | (d & 0xF000F0) << 4;
d *= 0x11;
d = Binary.BigEndian (d);
Fill (output, dst , count, (uint)d);
Fill (output, dst+h, count, (uint)d);
}
else
{
uint d0 = m_input.ReadUInt32();
uint d1 = m_input.ReadUInt32();
uint p0 = d0 << 24 | d0 & 0xFF0000 | (d1 & 0xFF) << 8 | (d1 & 0xFF0000) >> 16;
uint p1 = (d0 & 0xFF00) << 16 | (d0 & 0xFF000000) >> 8 | d1 & 0xFF00 | (d1 & 0xFF000000) >> 24;
Fill (output, dst , count, p0);
Fill (output, dst+h, count, p1);
}
dst += count * 4;
}
else // 0xFF
{
dst += h;
width -= 2;
if (0 == width)
break;
if (1 == width)
{
Unpack8Line (plane_index, dst);
break;
}
}
}
}
void Unpack8Line (int plane_index, int dst)
{
var output = m_planes[plane_index];
int h = m_info.iHeight;
int end_pos = dst + h;
while (m_input.PeekByte() != -1)
{
byte ctl = m_input.ReadUInt8();
if (ctl < 0x40)
{
byte b = 0;
if (ctl >= 0x20)
b = 0xFF;
int count = ctl & 0x1F;
if (0 == count)
count = m_input.ReadUInt8();
Fill (output, dst, count, b);
dst += count;
}
else if (ctl < 0xA0)
{
int count = ctl & 0x1F;
if (0 == count)
count = m_input.ReadUInt8();
int src_plane = (ctl - 0x40) >> 5;
Buffer.BlockCopy (m_planes[src_plane], dst, output, dst, count);
dst += count;
}
else if (ctl < 0xF0)
{
int count = ctl & 0xF;
if (0 == count)
count = m_input.ReadUInt8();
switch (ctl & 0xF0)
{
case 0xA0: Binary.CopyOverlapped (output, dst-16, dst, count); break;
case 0xB0: Binary.CopyOverlapped (output, dst-8, dst, count); break;
case 0xC0: Binary.CopyOverlapped (output, dst-4, dst, count); break;
case 0xD0: Binary.CopyOverlapped (output, dst-2, dst, count); break;
case 0xE0: Binary.CopyOverlapped (output, dst-h*2, dst, count); break;
}
dst += count;
}
else if (ctl < 0xF9)
{
int count = ctl & 0xF;
if (0 == count)
count = m_input.ReadUInt8();
m_input.Read (output, dst, count);
dst += count;
}
else if (0xF9 == ctl)
{
dst += m_input.ReadUInt8();
}
else if (0xFA == ctl)
{
int count = m_input.ReadUInt8();
byte b = m_input.ReadUInt8();
Fill (output, dst, count, b);
dst += count;
}
else if (0xFB == ctl)
{
int count = m_input.ReadUInt8();
int b = count >> 7;
count &= 0x7F;
while (count --> 0)
{
output[dst] = (byte)~m_planes[b][dst];
++dst;
}
}
else if (0xFC == ctl)
{
int count = m_input.ReadUInt8();
if ((count & 0x80) != 0)
{
count &= 0x7F;
byte b = m_input.ReadUInt8();
ushort d = (ushort)(b & 0xF | (b & 0xF0) << 4);
d |= (ushort)(d << 4);
Fill (output, dst, count, d);
dst += count * 2;
}
else
{
while (count --> 0)
{
output[dst] = (byte)~m_planes[2][dst];
++dst;
}
}
}
else if (0xFD == ctl)
{
int count = m_input.ReadUInt8();
if ((count & 0x80) != 0)
{
byte b = m_input.ReadUInt8();
uint d = (uint)(b & 0xF | b << 4 | (b & 0xF0) << 8);
if ((count & 0x40) != 0)
{
b = m_input.ReadUInt8();
d |= (uint)((b & 0xF) << 16 | b << 20 | (b & 0xF0) << 24);
}
else
{
d |= (d & 0x3F3F) << 18 | (d & 0xC0C0) << 10;
}
count &= 0x3F;
Fill (output, dst, count, d);
dst += count * 4;
}
else
{
ushort w = m_input.ReadUInt16();
Fill (output, dst, count, w);
dst += count * 2;
}
}
else if (0xFE == ctl)
{
int count = m_input.ReadUInt8();
int b = count & 0xC0;
if (b != 0)
{
count &= 0x3F;
b >>= 6;
while (count --> 0)
{
output[dst] = (byte)(m_planes[b & 1][dst] & m_planes[b & 2][dst]);
++dst;
}
}
else
{
uint u = m_input.ReadUInt32();
Fill (output, dst, count, u);
dst += count * 4;
}
}
else // 0xFF
{
break;
}
}
}
void FlattenPlanes (byte[] output)
{
int plane_size = m_planes[0].Length;
int src = 0;
for (int x = 0; x < m_output_stride; x += 4)
{
int dst = x;
for (int y = 0; y < m_info.iHeight; ++y)
{
byte b0 = m_planes[0][src];
byte b1 = m_planes[1][src];
byte b2 = m_planes[2][src];
byte b3 = m_planes[3][src];
++src;
for (int j = 0; j < 8; j += 2)
{
byte px = (byte)((((b0 << j) & 0x80) >> 3)
| (((b1 << j) & 0x80) >> 2)
| (((b2 << j) & 0x80) >> 1)
| (((b3 << j) & 0x80) >> 0));
px |= (byte)((((b0 << j) & 0x40) >> 6)
| (((b1 << j) & 0x40) >> 5)
| (((b2 << j) & 0x40) >> 4)
| (((b3 << j) & 0x40) >> 3));
output[dst+j/2] = px;
}
dst += m_output_stride;
}
}
}
static void Fill (byte[] output, int dst, int count, byte pixel)
{
while (count --> 0)
{
output[dst++] = pixel;
}
}
static void Fill (byte[] output, int dst, int count, ushort pixel)
{
count <<= 1;
for (int i = 0; i < count; i += 2)
{
LittleEndian.Pack (pixel, output, dst+i);
}
}
static void Fill (byte[] output, int dst, int count, uint pixel)
{
count <<= 2;
for (int i = 0; i < count; i += 4)
{
LittleEndian.Pack (pixel, output, dst+i);
}
}
BitmapPalette ReadPalette ()
{
using (var bits = new MsbBitStream (m_input.AsStream, true))
{
var colors = new Color[16];
for (int i = 0; i < 16; ++i)
{
int b = bits.GetBits (4) * 0x11;
int r = bits.GetBits (4) * 0x11;
int g = bits.GetBits (4) * 0x11;
colors[i] = Color.FromRgb ((byte)r, (byte)g, (byte)b);
}
return new BitmapPalette (colors);
}
}
}
}