GARbro-mirror/ArcFormats/Primel/SHA256.cs

143 lines
4.9 KiB
C#

//! \file SHA256.cs
//! \date Sat Oct 01 10:25:28 2016
//! \brief Slightly modified SHA256 hash algorithm implementation.
//
using System;
using GameRes.Utility;
namespace GameRes.Formats.Primel
{
/// <summary>
/// limited implementation of SHA256 hash function.
/// differs from the standard SHA256 by rotation operands in TransformBlock method.
/// as these hashes in Primel are used to generate keys only, this implementation works
/// for messages shorter than 56 bytes only.
/// </summary>
public class SHA256
{
uint[] m_state;
uint[] m_data;
const int BlockSize = 64;
public SHA256 ()
{
m_state = new uint[] {
0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A,
0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19
};
m_data = new uint[BlockSize / sizeof(uint)];
}
public byte[] ComputeHash (byte[] data)
{
if (data.Length > 55)
throw new ApplicationException ("[SHA256] message is too long");
CopyBigEndian (data, 0, data.Length);
m_data[m_data.Length-1] = (uint)(data.Length * 8);
TransformBlock();
var hash = new byte[32];
int dst = 0;
for (int i = 0; i < 8; ++i)
{
hash[dst++] = (byte)(m_state[i] >> 24);
hash[dst++] = (byte)(m_state[i] >> 16);
hash[dst++] = (byte)(m_state[i] >> 8);
hash[dst++] = (byte)m_state[i];
}
return hash;
}
void CopyBigEndian (byte[] data, int src, int size)
{
int word_count = size / 4;
int i;
for (i = 0; i < word_count; ++i)
{
m_data[i] = BigEndian.ToUInt32 (data, src);
src += 4;
}
if (size < BlockSize)
{
m_data[i] = 0;
int shift = 24;
for (int j = size & 3; j > 0; --j)
{
m_data[i] |= (uint)data[src++] << shift;
shift -= 8;
}
m_data[i] |= 0x80u << shift;
while (++i < m_data.Length)
m_data[i] = 0;
}
}
void TransformBlock ()
{
uint a = m_state[0];
uint b = m_state[1];
uint c = m_state[2];
uint d = m_state[3];
uint e = m_state[4];
uint f = m_state[5];
uint g = m_state[6];
uint h = m_state[7];
for (int j = 0; j < 64; j += 16)
for (int i = 0; i < 16; ++i)
{
if (j > 0)
{
uint x = m_data[(i - 15) & 15];
uint y = m_data[(i - 2) & 15];
x = Binary.RotL (x, 7) ^ Binary.RotL (x, 18) ^ (x >> 3);
y = Binary.RotL (y, 17) ^ Binary.RotL (y, 19) ^ (y >> 10);
m_data[i] += x + y + m_data[(i-7)&15];
}
uint s0 = Binary.RotL (a, 2) ^ Binary.RotL (a, 13) ^ Binary.RotR (a, 10);
uint maj = (a & b) ^ (b & c) ^ (c & a);
uint t0 = s0 + maj;
uint s1 = Binary.RotL (e, 6) ^ Binary.RotL (e, 11) ^ Binary.RotR (e, 7);
uint ch = (e & f) ^ (~e & g);
uint t1 = h + s1 + ch + SHA256_K[i+j] + m_data[i];
h = g;
g = f;
f = e;
e = d + t1;
d = c;
c = b;
b = a;
a = t0 + t1;
}
m_state[0] += a;
m_state[1] += b;
m_state[2] += c;
m_state[3] += d;
m_state[4] += e;
m_state[5] += f;
m_state[6] += g;
m_state[7] += h;
}
static readonly uint[] SHA256_K = {
0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5,
0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5,
0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3,
0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174,
0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC,
0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA,
0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7,
0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967,
0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13,
0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85,
0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3,
0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070,
0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5,
0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3,
0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208,
0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2,
};
}
}