2024-05-03 01:29:57 +03:00
/* Copyright (C) 2019 Mr Goldberg
This file is part of the Goldberg Emulator
The Goldberg Emulator is free software ; you can redistribute it and / or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation ; either
version 3 of the License , or ( at your option ) any later version .
The Goldberg Emulator is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY ; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the GNU
Lesser General Public License for more details .
You should have received a copy of the GNU Lesser General Public
License along with the Goldberg Emulator ; if not , see
< http : //www.gnu.org/licenses/>. */
# include "dll/steam_networking_sockets.h"
void Steam_Networking_Sockets : : steam_callback ( void * object , Common_Message * msg )
{
// PRINT_DEBUG_ENTRY();
Steam_Networking_Sockets * steam_networkingsockets = ( Steam_Networking_Sockets * ) object ;
steam_networkingsockets - > Callback ( msg ) ;
}
void Steam_Networking_Sockets : : steam_run_every_runcb ( void * object )
{
// PRINT_DEBUG_ENTRY();
Steam_Networking_Sockets * steam_networkingsockets = ( Steam_Networking_Sockets * ) object ;
steam_networkingsockets - > RunCallbacks ( ) ;
}
SteamNetworkingMessage_t * Steam_Networking_Sockets : : get_steam_message_connection ( HSteamNetConnection hConn )
{
auto connect_socket = sbcs - > connect_sockets . find ( hConn ) ;
if ( connect_socket = = sbcs - > connect_sockets . end ( ) ) return NULL ;
if ( connect_socket - > second . data . empty ( ) ) return NULL ;
SteamNetworkingMessage_t * pMsg = new SteamNetworkingMessage_t ( ) ;
2024-05-25 14:59:13 +02:00
unsigned long size = static_cast < unsigned long > ( connect_socket - > second . data . top ( ) . data ( ) . size ( ) ) ;
2024-05-03 01:29:57 +03:00
pMsg - > m_pData = malloc ( size ) ;
pMsg - > m_cbSize = size ;
memcpy ( pMsg - > m_pData , connect_socket - > second . data . top ( ) . data ( ) . data ( ) , size ) ;
pMsg - > m_conn = hConn ;
pMsg - > m_identityPeer = connect_socket - > second . remote_identity ;
pMsg - > m_nConnUserData = connect_socket - > second . user_data ;
pMsg - > m_usecTimeReceived = std : : chrono : : duration_cast < std : : chrono : : microseconds > ( std : : chrono : : steady_clock : : now ( ) - created ) . count ( ) ;
//TODO: check where messagenumber starts
pMsg - > m_nMessageNumber = connect_socket - > second . data . top ( ) . message_number ( ) ;
pMsg - > m_pfnFreeData = & free_steam_message_data ;
pMsg - > m_pfnRelease = & delete_steam_message ;
pMsg - > m_nChannel = 0 ;
connect_socket - > second . data . pop ( ) ;
PRINT_DEBUG ( " get_steam_message_connection %u %lu, %llu " , hConn , size , pMsg - > m_nMessageNumber ) ;
return pMsg ;
}
void Steam_Networking_Sockets : : free_steam_message_data ( SteamNetworkingMessage_t * pMsg )
{
free ( pMsg - > m_pData ) ;
pMsg - > m_pData = NULL ;
}
void Steam_Networking_Sockets : : delete_steam_message ( SteamNetworkingMessage_t * pMsg )
{
if ( pMsg - > m_pfnFreeData ) pMsg - > m_pfnFreeData ( pMsg ) ;
delete pMsg ;
}
unsigned long Steam_Networking_Sockets : : get_socket_id ( )
{
static unsigned long socket_id ;
socket_id + + ;
return socket_id ;
}
HSteamNetConnection Steam_Networking_Sockets : : new_connect_socket ( SteamNetworkingIdentity remote_identity , int virtual_port , int real_port , enum connect_socket_status status , HSteamListenSocket listen_socket_id , HSteamNetConnection remote_id )
{
Connect_Socket socket = { } ;
socket . remote_identity = remote_identity ;
socket . virtual_port = virtual_port ;
socket . real_port = real_port ;
socket . listen_socket_id = listen_socket_id ;
socket . remote_id = remote_id ;
socket . status = status ;
socket . user_data = - 1 ;
socket . poll_group = k_HSteamNetPollGroup_Invalid ;
socket . created_by = settings - > get_local_steam_id ( ) ;
socket . connect_request_last_sent = std : : chrono : : steady_clock : : now ( ) ;
socket . connect_requests_sent = 0 ;
socket . packet_send_counter = 1 ;
HSteamNetConnection socket_id = get_socket_id ( ) ;
if ( socket_id = = k_HSteamNetConnection_Invalid ) + + socket_id ;
if ( sbcs - > connect_sockets . insert ( std : : make_pair ( socket_id , socket ) ) . second = = false ) {
return k_HSteamNetConnection_Invalid ;
}
return socket_id ;
}
struct Listen_Socket * Steam_Networking_Sockets : : get_connection_socket ( HSteamListenSocket id )
{
auto conn = std : : find_if ( sbcs - > listen_sockets . begin ( ) , sbcs - > listen_sockets . end ( ) , [ & id ] ( struct Listen_Socket const & conn ) { return conn . socket_id = = id ; } ) ;
if ( conn = = sbcs - > listen_sockets . end ( ) ) return NULL ;
return & ( * conn ) ;
}
bool Steam_Networking_Sockets : : send_packet_new_connection ( HSteamNetConnection m_hConn )
{
auto connect_socket = sbcs - > connect_sockets . find ( m_hConn ) ;
if ( connect_socket = = sbcs - > connect_sockets . end ( ) ) return false ;
//TODO: right now this only supports connecting with steam id, might need to make ip/port connections work in the future when I find a game that uses them.
Common_Message msg ;
msg . set_source_id ( connect_socket - > second . created_by . ConvertToUint64 ( ) ) ;
msg . set_allocated_networking_sockets ( new Networking_Sockets ) ;
if ( connect_socket - > second . status = = CONNECT_SOCKET_CONNECTING ) {
msg . mutable_networking_sockets ( ) - > set_type ( Networking_Sockets : : CONNECTION_REQUEST ) ;
} else if ( connect_socket - > second . status = = CONNECT_SOCKET_CONNECTED ) {
msg . mutable_networking_sockets ( ) - > set_type ( Networking_Sockets : : CONNECTION_ACCEPTED ) ;
}
msg . mutable_networking_sockets ( ) - > set_virtual_port ( connect_socket - > second . virtual_port ) ;
msg . mutable_networking_sockets ( ) - > set_real_port ( connect_socket - > second . real_port ) ;
msg . mutable_networking_sockets ( ) - > set_connection_id_from ( connect_socket - > first ) ;
msg . mutable_networking_sockets ( ) - > set_connection_id ( connect_socket - > second . remote_id ) ;
uint64_t steam_id = connect_socket - > second . remote_identity . GetSteamID64 ( ) ;
if ( steam_id ) {
msg . set_dest_id ( steam_id ) ;
return network - > sendTo ( & msg , true ) ;
}
const SteamNetworkingIPAddr * ip_addr = connect_socket - > second . remote_identity . GetIPAddr ( ) ;
if ( ip_addr ) {
return network - > sendToIPPort ( & msg , ip_addr - > GetIPv4 ( ) , ip_addr - > m_port , true ) ;
}
return false ;
}
shared_between_client_server * Steam_Networking_Sockets : : get_shared_between_client_server ( )
{
return sbcs ;
}
HSteamListenSocket Steam_Networking_Sockets : : new_listen_socket ( int nSteamConnectVirtualPort , int real_port )
{
HSteamListenSocket socket_id = get_socket_id ( ) ;
if ( socket_id = = k_HSteamListenSocket_Invalid ) + + socket_id ;
CSteamID steam_id = settings - > get_local_steam_id ( ) ;
auto conn = std : : find_if ( sbcs - > listen_sockets . begin ( ) , sbcs - > listen_sockets . end ( ) , [ & nSteamConnectVirtualPort , & steam_id ] ( struct Listen_Socket const & conn ) { return conn . virtual_port = = nSteamConnectVirtualPort & & conn . created_by = = steam_id ; } ) ;
if ( conn ! = sbcs - > listen_sockets . end ( ) ) return k_HSteamListenSocket_Invalid ;
struct Listen_Socket listen_socket ;
listen_socket . socket_id = socket_id ;
listen_socket . virtual_port = nSteamConnectVirtualPort ;
listen_socket . real_port = real_port ;
listen_socket . created_by = steam_id ;
sbcs - > listen_sockets . push_back ( listen_socket ) ;
return socket_id ;
}
ESteamNetworkingConnectionState Steam_Networking_Sockets : : convert_status ( enum connect_socket_status old_status )
{
if ( old_status = = CONNECT_SOCKET_NO_CONNECTION ) return k_ESteamNetworkingConnectionState_None ;
if ( old_status = = CONNECT_SOCKET_CONNECTING ) return k_ESteamNetworkingConnectionState_Connecting ;
if ( old_status = = CONNECT_SOCKET_NOT_ACCEPTED ) return k_ESteamNetworkingConnectionState_Connecting ;
if ( old_status = = CONNECT_SOCKET_CONNECTED ) return k_ESteamNetworkingConnectionState_Connected ;
if ( old_status = = CONNECT_SOCKET_CLOSED ) return k_ESteamNetworkingConnectionState_ClosedByPeer ;
if ( old_status = = CONNECT_SOCKET_TIMEDOUT ) return k_ESteamNetworkingConnectionState_ProblemDetectedLocally ;
return k_ESteamNetworkingConnectionState_None ;
}
void Steam_Networking_Sockets : : set_steamnetconnectioninfo ( std : : map < HSteamNetConnection , Connect_Socket > : : iterator connect_socket , SteamNetConnectionInfo_t * pInfo )
{
pInfo - > m_identityRemote = connect_socket - > second . remote_identity ;
pInfo - > m_nUserData = connect_socket - > second . user_data ;
pInfo - > m_hListenSocket = connect_socket - > second . listen_socket_id ;
pInfo - > m_addrRemote . Clear ( ) ; //TODO
if ( connect_socket - > second . real_port ! = SNS_DISABLED_PORT ) {
pInfo - > m_addrRemote . SetIPv4 ( network - > getIP ( connect_socket - > second . remote_identity . GetSteamID ( ) ) , connect_socket - > first ) ;
}
pInfo - > m_idPOPRemote = 0 ;
pInfo - > m_idPOPRelay = 0 ;
pInfo - > m_eState = convert_status ( connect_socket - > second . status ) ;
pInfo - > m_eEndReason = 0 ; //TODO
pInfo - > m_szEndDebug [ 0 ] = 0 ;
sprintf ( pInfo - > m_szConnectionDescription , " %u " , connect_socket - > first ) ;
//Note some games might not allocate a struct the whole size of SteamNetConnectionInfo_t when calling GetConnectionInfo
//keep this in mind in future interface updates
}
void Steam_Networking_Sockets : : launch_callback ( HSteamNetConnection m_hConn , enum connect_socket_status old_status )
{
auto connect_socket = sbcs - > connect_sockets . find ( m_hConn ) ;
if ( connect_socket = = sbcs - > connect_sockets . end ( ) ) return ;
struct SteamNetConnectionStatusChangedCallback_t data = { } ;
data . m_hConn = connect_socket - > first ;
data . m_eOldState = convert_status ( old_status ) ;
set_steamnetconnectioninfo ( connect_socket , & data . m_info ) ;
callbacks - > addCBResult ( data . k_iCallback , & data , sizeof ( data ) ) ;
}
Steam_Networking_Sockets : : Steam_Networking_Sockets ( class Settings * settings , class Networking * network , class SteamCallResults * callback_results , class SteamCallBacks * callbacks , class RunEveryRunCB * run_every_runcb , shared_between_client_server * sbcs )
{
this - > settings = settings ;
this - > network = network ;
this - > run_every_runcb = run_every_runcb ;
this - > callback_results = callback_results ;
this - > callbacks = callbacks ;
this - > created = std : : chrono : : steady_clock : : now ( ) ;
if ( ! sbcs ) { // client
this - > sbcs = new shared_between_client_server ( ) ;
this - > sbcs - > used = 0 ;
} else { // game server
this - > sbcs = sbcs ;
+ + this - > sbcs - > used ;
}
this - > network - > setCallback ( CALLBACK_ID_USER_STATUS , settings - > get_local_steam_id ( ) , & Steam_Networking_Sockets : : steam_callback , this ) ;
this - > network - > setCallback ( CALLBACK_ID_NETWORKING_SOCKETS , settings - > get_local_steam_id ( ) , & Steam_Networking_Sockets : : steam_callback , this ) ;
this - > run_every_runcb - > add ( & Steam_Networking_Sockets : : steam_run_every_runcb , this ) ;
}
Steam_Networking_Sockets : : ~ Steam_Networking_Sockets ( )
{
this - > network - > rmCallback ( CALLBACK_ID_USER_STATUS , settings - > get_local_steam_id ( ) , & Steam_Networking_Sockets : : steam_callback , this ) ;
this - > network - > rmCallback ( CALLBACK_ID_NETWORKING_SOCKETS , settings - > get_local_steam_id ( ) , & Steam_Networking_Sockets : : steam_callback , this ) ;
this - > run_every_runcb - > remove ( & Steam_Networking_Sockets : : steam_run_every_runcb , this ) ;
if ( this - > sbcs ) {
if ( this - > sbcs - > used ) {
- - this - > sbcs - > used ;
} else {
delete this - > sbcs ;
this - > sbcs = nullptr ;
}
}
}
/// Creates a "server" socket that listens for clients to connect to, either by calling
/// ConnectSocketBySteamID or ConnectSocketByIPv4Address.
///
/// nSteamConnectVirtualPort specifies how clients can connect to this socket using
/// ConnectBySteamID. A negative value indicates that this functionality is
/// disabled and clients must connect by IP address. It's very common for applications
/// to only have one listening socket; in that case, use zero. If you need to open
/// multiple listen sockets and have clients be able to connect to one or the other, then
/// nSteamConnectVirtualPort should be a small integer constant unique to each listen socket
/// you create.
///
/// In the open-source version of this API, you must pass -1 for nSteamConnectVirtualPort
///
/// If you want clients to connect to you by your IPv4 addresses using
/// ConnectByIPv4Address, then you must set nPort to be nonzero. Steam will
/// bind a UDP socket to the specified local port, and clients will send packets using
/// ordinary IP routing. It's up to you to take care of NAT, protecting your server
/// from DoS, etc. If you don't need clients to connect to you by IP, then set nPort=0.
/// Use nIP if you wish to bind to a particular local interface. Typically you will use 0,
/// which means to listen on all interfaces, and accept the default outbound IP address.
/// If nPort is zero, then nIP must also be zero.
///
/// A SocketStatusCallback_t callback when another client attempts a connection.
HSteamListenSocket Steam_Networking_Sockets : : CreateListenSocket ( int nSteamConnectVirtualPort , uint32 nIP , uint16 nPort )
{
PRINT_DEBUG ( " %i %u %u " , nSteamConnectVirtualPort , nIP , nPort ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
return new_listen_socket ( nSteamConnectVirtualPort , nPort ) ;
}
/// Creates a "server" socket that listens for clients to connect to by
/// calling ConnectByIPAddress, over ordinary UDP (IPv4 or IPv6)
///
/// You must select a specific local port to listen on and set it
/// the port field of the local address.
///
/// Usually you wil set the IP portion of the address to zero, (SteamNetworkingIPAddr::Clear()).
/// This means that you will not bind to any particular local interface. In addition,
/// if possible the socket will be bound in "dual stack" mode, which means that it can
/// accept both IPv4 and IPv6 clients. If you wish to bind a particular interface, then
/// set the local address to the appropriate IPv4 or IPv6 IP.
///
/// When a client attempts to connect, a SteamNetConnectionStatusChangedCallback_t
/// will be posted. The connection will be in the connecting state.
HSteamListenSocket Steam_Networking_Sockets : : CreateListenSocketIP ( const SteamNetworkingIPAddr & localAddress )
{
PRINT_DEBUG ( " old " ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
return new_listen_socket ( SNS_DISABLED_PORT , localAddress . m_port ) ;
}
HSteamListenSocket Steam_Networking_Sockets : : CreateListenSocketIP ( const SteamNetworkingIPAddr * localAddress )
{
PRINT_DEBUG ( " old1 " ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
return new_listen_socket ( SNS_DISABLED_PORT , localAddress - > m_port ) ;
}
HSteamListenSocket Steam_Networking_Sockets : : CreateListenSocketIP ( const SteamNetworkingIPAddr & localAddress , int nOptions , const SteamNetworkingConfigValue_t * pOptions )
{
PRINT_DEBUG_ENTRY ( ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
return new_listen_socket ( SNS_DISABLED_PORT , localAddress . m_port ) ;
}
/// Creates a connection and begins talking to a "server" over UDP at the
/// given IPv4 or IPv6 address. The remote host must be listening with a
/// matching call to CreateListenSocketIP on the specified port.
///
/// A SteamNetConnectionStatusChangedCallback_t callback will be triggered when we start
/// connecting, and then another one on either timeout or successful connection.
///
/// If the server does not have any identity configured, then their network address
/// will be the only identity in use. Or, the network host may provide a platform-specific
/// identity with or without a valid certificate to authenticate that identity. (These
/// details will be contained in the SteamNetConnectionStatusChangedCallback_t.) It's
/// up to your application to decide whether to allow the connection.
///
/// By default, all connections will get basic encryption sufficient to prevent
/// casual eavesdropping. But note that without certificates (or a shared secret
/// distributed through some other out-of-band mechanism), you don't have any
/// way of knowing who is actually on the other end, and thus are vulnerable to
/// man-in-the-middle attacks.
HSteamNetConnection Steam_Networking_Sockets : : ConnectByIPAddress ( const SteamNetworkingIPAddr & address )
{
PRINT_DEBUG ( " old " ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
SteamNetworkingIdentity ip_id ;
ip_id . SetIPAddr ( address ) ;
HSteamNetConnection socket = new_connect_socket ( ip_id , SNS_DISABLED_PORT , address . m_port ) ;
send_packet_new_connection ( socket ) ;
return socket ;
}
HSteamNetConnection Steam_Networking_Sockets : : ConnectByIPAddress ( const SteamNetworkingIPAddr * address )
{
PRINT_DEBUG ( " old1 " ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
SteamNetworkingIdentity ip_id ;
ip_id . SetIPAddr ( * address ) ;
HSteamNetConnection socket = new_connect_socket ( ip_id , SNS_DISABLED_PORT , address - > m_port ) ;
send_packet_new_connection ( socket ) ;
return socket ;
}
HSteamNetConnection Steam_Networking_Sockets : : ConnectByIPAddress ( const SteamNetworkingIPAddr & address , int nOptions , const SteamNetworkingConfigValue_t * pOptions )
{
PRINT_DEBUG ( " %X " , address . GetIPv4 ( ) ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
SteamNetworkingIdentity ip_id ;
ip_id . SetIPAddr ( address ) ;
HSteamNetConnection socket = new_connect_socket ( ip_id , SNS_DISABLED_PORT , address . m_port ) ;
send_packet_new_connection ( socket ) ;
return socket ;
}
/// Like CreateListenSocketIP, but clients will connect using ConnectP2P
///
/// nVirtualPort specifies how clients can connect to this socket using
/// ConnectP2P. It's very common for applications to only have one listening socket;
/// in that case, use zero. If you need to open multiple listen sockets and have clients
/// be able to connect to one or the other, then nVirtualPort should be a small integer (<1000)
/// unique to each listen socket you create.
///
/// If you use this, you probably want to call ISteamNetworkingUtils::InitializeRelayNetworkAccess()
/// when your app initializes
HSteamListenSocket Steam_Networking_Sockets : : CreateListenSocketP2P ( int nVirtualPort )
{
PRINT_DEBUG ( " old %i " , nVirtualPort ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
return new_listen_socket ( nVirtualPort , SNS_DISABLED_PORT ) ;
}
HSteamListenSocket Steam_Networking_Sockets : : CreateListenSocketP2P ( int nVirtualPort , int nOptions , const SteamNetworkingConfigValue_t * pOptions )
{
PRINT_DEBUG ( " %i " , nVirtualPort ) ;
//TODO config options
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
return new_listen_socket ( nVirtualPort , SNS_DISABLED_PORT ) ;
}
/// Begin connecting to a server that is identified using a platform-specific identifier.
/// This requires some sort of third party rendezvous service, and will depend on the
/// platform and what other libraries and services you are integrating with.
///
/// At the time of this writing, there is only one supported rendezvous service: Steam.
/// Set the SteamID (whether "user" or "gameserver") and Steam will determine if the
/// client is online and facilitate a relay connection. Note that all P2P connections on
/// Steam are currently relayed.
///
/// If you use this, you probably want to call ISteamNetworkingUtils::InitializeRelayNetworkAccess()
/// when your app initializes
HSteamNetConnection Steam_Networking_Sockets : : ConnectP2P ( const SteamNetworkingIdentity & identityRemote , int nVirtualPort )
{
PRINT_DEBUG ( " old %i " , nVirtualPort ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
const SteamNetworkingIPAddr * ip = identityRemote . GetIPAddr ( ) ;
if ( identityRemote . m_eType = = k_ESteamNetworkingIdentityType_SteamID ) {
PRINT_DEBUG ( " %llu " , identityRemote . GetSteamID64 ( ) ) ;
//steam id identity
} else if ( ip ) {
PRINT_DEBUG ( " %u:%u ipv4? %u " , ip - > GetIPv4 ( ) , ip - > m_port , ip - > IsIPv4 ( ) ) ;
//ip addr
} else {
return k_HSteamNetConnection_Invalid ;
}
HSteamNetConnection socket = new_connect_socket ( identityRemote , nVirtualPort , SNS_DISABLED_PORT ) ;
send_packet_new_connection ( socket ) ;
return socket ;
}
HSteamNetConnection Steam_Networking_Sockets : : ConnectP2P ( const SteamNetworkingIdentity * identityRemote , int nVirtualPort )
{
PRINT_DEBUG ( " old1 " ) ;
return ConnectP2P ( * identityRemote , nVirtualPort ) ;
}
HSteamNetConnection Steam_Networking_Sockets : : ConnectP2P ( const SteamNetworkingIdentity & identityRemote , int nVirtualPort , int nOptions , const SteamNetworkingConfigValue_t * pOptions )
{
PRINT_DEBUG ( " %i " , nVirtualPort ) ;
//TODO config options
return ConnectP2P ( identityRemote , nVirtualPort ) ;
}
/// Creates a connection and begins talking to a remote destination. The remote host
/// must be listening with a matching call to CreateListenSocket.
///
/// Use ConnectBySteamID to connect using the SteamID (client or game server) as the network address.
/// Use ConnectByIPv4Address to connect by IP address.
///
/// A SteamNetConnectionStatusChangedCallback_t callback will be triggered when we start connecting,
/// and then another one on timeout or successful connection
//#ifndef STEAMNETWORKINGSOCKETS_OPENSOURCE
HSteamNetConnection Steam_Networking_Sockets : : ConnectBySteamID ( CSteamID steamIDTarget , int nVirtualPort )
{
PRINT_DEBUG_TODO ( ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
return k_HSteamNetConnection_Invalid ;
}
//#endif
HSteamNetConnection Steam_Networking_Sockets : : ConnectByIPv4Address ( uint32 nIP , uint16 nPort )
{
PRINT_DEBUG_TODO ( ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
return k_HSteamNetConnection_Invalid ;
}
/// Accept an incoming connection that has been received on a listen socket.
///
/// When a connection attempt is received (perhaps after a few basic handshake
/// packets have been exchanged to prevent trivial spoofing), a connection interface
/// object is created in the k_ESteamNetworkingConnectionState_Connecting state
/// and a SteamNetConnectionStatusChangedCallback_t is posted. At this point, your
/// application MUST either accept or close the connection. (It may not ignore it.)
/// Accepting the connection will transition it either into the connected state,
/// of the finding route state, depending on the connection type.
///
/// You should take action within a second or two, because accepting the connection is
/// what actually sends the reply notifying the client that they are connected. If you
/// delay taking action, from the client's perspective it is the same as the network
/// being unresponsive, and the client may timeout the connection attempt. In other
/// words, the client cannot distinguish between a delay caused by network problems
/// and a delay caused by the application.
///
/// This means that if your application goes for more than a few seconds without
/// processing callbacks (for example, while loading a map), then there is a chance
/// that a client may attempt to connect in that interval and fail due to timeout.
///
/// If the application does not respond to the connection attempt in a timely manner,
/// and we stop receiving communication from the client, the connection attempt will
/// be timed out locally, transitioning the connection to the
/// k_ESteamNetworkingConnectionState_ProblemDetectedLocally state. The client may also
/// close the connection before it is accepted, and a transition to the
/// k_ESteamNetworkingConnectionState_ClosedByPeer is also possible depending the exact
/// sequence of events.
///
/// Returns k_EResultInvalidParam if the handle is invalid.
/// Returns k_EResultInvalidState if the connection is not in the appropriate state.
/// (Remember that the connection state could change in between the time that the
/// notification being posted to the queue and when it is received by the application.)
EResult Steam_Networking_Sockets : : AcceptConnection ( HSteamNetConnection hConn )
{
PRINT_DEBUG ( " %u " , hConn ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
auto connect_socket = sbcs - > connect_sockets . find ( hConn ) ;
if ( connect_socket = = sbcs - > connect_sockets . end ( ) ) return k_EResultInvalidParam ;
if ( connect_socket - > second . status ! = CONNECT_SOCKET_NOT_ACCEPTED ) return k_EResultInvalidState ;
connect_socket - > second . status = CONNECT_SOCKET_CONNECTED ;
send_packet_new_connection ( connect_socket - > first ) ;
launch_callback ( connect_socket - > first , CONNECT_SOCKET_NOT_ACCEPTED ) ;
return k_EResultOK ;
}
/// Disconnects from the remote host and invalidates the connection handle.
/// Any unread data on the connection is discarded.
///
/// nReason is an application defined code that will be received on the other
/// end and recorded (when possible) in backend analytics. The value should
/// come from a restricted range. (See ESteamNetConnectionEnd.) If you don't need
/// to communicate any information to the remote host, and do not want analytics to
/// be able to distinguish "normal" connection terminations from "exceptional" ones,
/// You may pass zero, in which case the generic value of
/// k_ESteamNetConnectionEnd_App_Generic will be used.
///
/// pszDebug is an optional human-readable diagnostic string that will be received
/// by the remote host and recorded (when possible) in backend analytics.
///
/// If you wish to put the socket into a "linger" state, where an attempt is made to
/// flush any remaining sent data, use bEnableLinger=true. Otherwise reliable data
/// is not flushed.
///
/// If the connection has already ended and you are just freeing up the
/// connection interface, the reason code, debug string, and linger flag are
/// ignored.
bool Steam_Networking_Sockets : : CloseConnection ( HSteamNetConnection hPeer , int nReason , const char * pszDebug , bool bEnableLinger )
{
PRINT_DEBUG ( " %u " , hPeer ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
auto connect_socket = sbcs - > connect_sockets . find ( hPeer ) ;
if ( connect_socket = = sbcs - > connect_sockets . end ( ) ) return false ;
if ( connect_socket - > second . status ! = CONNECT_SOCKET_CLOSED & & connect_socket - > second . status ! = CONNECT_SOCKET_TIMEDOUT ) {
//TODO send/nReason and pszDebug
Common_Message msg ;
msg . set_source_id ( connect_socket - > second . created_by . ConvertToUint64 ( ) ) ;
msg . set_dest_id ( connect_socket - > second . remote_identity . GetSteamID64 ( ) ) ;
msg . set_allocated_networking_sockets ( new Networking_Sockets ) ;
msg . mutable_networking_sockets ( ) - > set_type ( Networking_Sockets : : CONNECTION_END ) ;
msg . mutable_networking_sockets ( ) - > set_virtual_port ( connect_socket - > second . virtual_port ) ;
msg . mutable_networking_sockets ( ) - > set_real_port ( connect_socket - > second . real_port ) ;
msg . mutable_networking_sockets ( ) - > set_connection_id_from ( connect_socket - > first ) ;
msg . mutable_networking_sockets ( ) - > set_connection_id ( connect_socket - > second . remote_id ) ;
network - > sendTo ( & msg , true ) ;
}
sbcs - > connect_sockets . erase ( connect_socket ) ;
return true ;
}
/// Destroy a listen socket, and all the client sockets generated by accepting connections
/// on the listen socket.
///
/// pszNotifyRemoteReason determines what cleanup actions are performed on the client
/// sockets being destroyed. (See DestroySocket for more details.)
///
/// Note that if cleanup is requested and you have requested the listen socket bound to a
/// particular local port to facilitate direct UDP/IPv4 connections, then the underlying UDP
/// socket must remain open until all clients have been cleaned up.
bool Steam_Networking_Sockets : : CloseListenSocket ( HSteamListenSocket hSocket , const char * pszNotifyRemoteReason )
{
PRINT_DEBUG ( " old " ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
return false ;
}
/// Destroy a listen socket. All the connections that were accepting on the listen
/// socket are closed ungracefully.
bool Steam_Networking_Sockets : : CloseListenSocket ( HSteamListenSocket hSocket )
{
PRINT_DEBUG_ENTRY ( ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
auto conn = std : : find_if ( sbcs - > listen_sockets . begin ( ) , sbcs - > listen_sockets . end ( ) , [ & hSocket ] ( struct Listen_Socket const & conn ) { return conn . socket_id = = hSocket ; } ) ;
if ( conn = = sbcs - > listen_sockets . end ( ) ) return false ;
std : : queue < HSteamNetConnection > to_close ;
auto socket_conn = std : : begin ( sbcs - > connect_sockets ) ;
while ( socket_conn ! = std : : end ( sbcs - > connect_sockets ) ) {
if ( socket_conn - > second . listen_socket_id = = hSocket ) {
to_close . push ( socket_conn - > first ) ;
}
+ + socket_conn ;
}
while ( to_close . size ( ) ) {
CloseConnection ( to_close . front ( ) , 0 , " " , false ) ;
to_close . pop ( ) ;
}
sbcs - > listen_sockets . erase ( conn ) ;
return true ;
}
/// Set connection user data. Returns false if the handle is invalid.
bool Steam_Networking_Sockets : : SetConnectionUserData ( HSteamNetConnection hPeer , int64 nUserData )
{
PRINT_DEBUG_ENTRY ( ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
auto connect_socket = sbcs - > connect_sockets . find ( hPeer ) ;
if ( connect_socket = = sbcs - > connect_sockets . end ( ) ) return false ;
connect_socket - > second . user_data = nUserData ;
return true ;
}
/// Fetch connection user data. Returns -1 if handle is invalid
/// or if you haven't set any userdata on the connection.
int64 Steam_Networking_Sockets : : GetConnectionUserData ( HSteamNetConnection hPeer )
{
PRINT_DEBUG_ENTRY ( ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
auto connect_socket = sbcs - > connect_sockets . find ( hPeer ) ;
if ( connect_socket = = sbcs - > connect_sockets . end ( ) ) return - 1 ;
return connect_socket - > second . user_data ;
}
/// Set a name for the connection, used mostly for debugging
void Steam_Networking_Sockets : : SetConnectionName ( HSteamNetConnection hPeer , const char * pszName )
{
PRINT_DEBUG_TODO ( ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
}
/// Fetch connection name. Returns false if handle is invalid
bool Steam_Networking_Sockets : : GetConnectionName ( HSteamNetConnection hPeer , char * pszName , int nMaxLen )
{
PRINT_DEBUG_TODO ( ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
return false ;
}
/// Send a message to the remote host on the connected socket.
///
/// eSendType determines the delivery guarantees that will be provided,
/// when data should be buffered, etc.
///
/// Note that the semantics we use for messages are not precisely
/// the same as the semantics of a standard "stream" socket.
/// (SOCK_STREAM) For an ordinary stream socket, the boundaries
/// between chunks are not considered relevant, and the sizes of
/// the chunks of data written will not necessarily match up to
/// the sizes of the chunks that are returned by the reads on
/// the other end. The remote host might read a partial chunk,
/// or chunks might be coalesced. For the message semantics
/// used here, however, the sizes WILL match. Each send call
/// will match a successful read call on the remote host
/// one-for-one. If you are porting existing stream-oriented
/// code to the semantics of reliable messages, your code should
/// work the same, since reliable message semantics are more
/// strict than stream semantics. The only caveat is related to
/// performance: there is per-message overhead to retain the
/// messages sizes, and so if your code sends many small chunks
/// of data, performance will suffer. Any code based on stream
/// sockets that does not write excessively small chunks will
/// work without any changes.
EResult Steam_Networking_Sockets : : SendMessageToConnection ( HSteamNetConnection hConn , const void * pData , uint32 cbData , ESteamNetworkingSendType eSendType )
{
PRINT_DEBUG ( " old " ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
return k_EResultFail ;
}
/// Send a message to the remote host on the specified connection.
///
/// nSendFlags determines the delivery guarantees that will be provided,
/// when data should be buffered, etc. E.g. k_nSteamNetworkingSend_Unreliable
///
/// Note that the semantics we use for messages are not precisely
/// the same as the semantics of a standard "stream" socket.
/// (SOCK_STREAM) For an ordinary stream socket, the boundaries
/// between chunks are not considered relevant, and the sizes of
/// the chunks of data written will not necessarily match up to
/// the sizes of the chunks that are returned by the reads on
/// the other end. The remote host might read a partial chunk,
/// or chunks might be coalesced. For the message semantics
/// used here, however, the sizes WILL match. Each send call
/// will match a successful read call on the remote host
/// one-for-one. If you are porting existing stream-oriented
/// code to the semantics of reliable messages, your code should
/// work the same, since reliable message semantics are more
/// strict than stream semantics. The only caveat is related to
/// performance: there is per-message overhead to retain the
/// message sizes, and so if your code sends many small chunks
/// of data, performance will suffer. Any code based on stream
/// sockets that does not write excessively small chunks will
/// work without any changes.
///
/// The pOutMessageNumber is an optional pointer to receive the
/// message number assigned to the message, if sending was successful.
///
/// Returns:
/// - k_EResultInvalidParam: invalid connection handle, or the individual message is too big.
/// (See k_cbMaxSteamNetworkingSocketsMessageSizeSend)
/// - k_EResultInvalidState: connection is in an invalid state
/// - k_EResultNoConnection: connection has ended
/// - k_EResultIgnored: You used k_nSteamNetworkingSend_NoDelay, and the message was dropped because
/// we were not ready to send it.
/// - k_EResultLimitExceeded: there was already too much data queued to be sent.
/// (See k_ESteamNetworkingConfig_SendBufferSize)
EResult Steam_Networking_Sockets : : SendMessageToConnection ( HSteamNetConnection hConn , const void * pData , uint32 cbData , int nSendFlags , int64 * pOutMessageNumber )
{
PRINT_DEBUG ( " %u, len %u, flags %i " , hConn , cbData , nSendFlags ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
auto connect_socket = sbcs - > connect_sockets . find ( hConn ) ;
if ( connect_socket = = sbcs - > connect_sockets . end ( ) ) return k_EResultInvalidParam ;
if ( connect_socket - > second . status = = CONNECT_SOCKET_CLOSED ) return k_EResultNoConnection ;
if ( connect_socket - > second . status = = CONNECT_SOCKET_TIMEDOUT ) return k_EResultNoConnection ;
if ( connect_socket - > second . status ! = CONNECT_SOCKET_CONNECTED & & connect_socket - > second . status ! = CONNECT_SOCKET_CONNECTING ) return k_EResultInvalidState ;
Common_Message msg ;
msg . set_source_id ( connect_socket - > second . created_by . ConvertToUint64 ( ) ) ;
msg . set_dest_id ( connect_socket - > second . remote_identity . GetSteamID64 ( ) ) ;
msg . set_allocated_networking_sockets ( new Networking_Sockets ) ;
msg . mutable_networking_sockets ( ) - > set_type ( Networking_Sockets : : DATA ) ;
msg . mutable_networking_sockets ( ) - > set_virtual_port ( connect_socket - > second . virtual_port ) ;
msg . mutable_networking_sockets ( ) - > set_real_port ( connect_socket - > second . real_port ) ;
msg . mutable_networking_sockets ( ) - > set_connection_id_from ( connect_socket - > first ) ;
msg . mutable_networking_sockets ( ) - > set_connection_id ( connect_socket - > second . remote_id ) ;
msg . mutable_networking_sockets ( ) - > set_data ( pData , cbData ) ;
uint64 message_number = connect_socket - > second . packet_send_counter ;
msg . mutable_networking_sockets ( ) - > set_message_number ( message_number ) ;
connect_socket - > second . packet_send_counter + = 1 ;
bool reliable = false ;
if ( nSendFlags & k_nSteamNetworkingSend_Reliable ) reliable = true ;
if ( network - > sendTo ( & msg , reliable ) ) {
if ( pOutMessageNumber ) * pOutMessageNumber = message_number ;
return k_EResultOK ;
}
return k_EResultFail ;
}
EResult Steam_Networking_Sockets : : SendMessageToConnection ( HSteamNetConnection hConn , const void * pData , uint32 cbData , int nSendFlags )
{
PRINT_DEBUG ( " old %u, len %u, flags %i " , hConn , cbData , nSendFlags ) ;
return SendMessageToConnection ( hConn , pData , cbData , nSendFlags , NULL ) ;
}
/// Send one or more messages without copying the message payload.
/// This is the most efficient way to send messages. To use this
/// function, you must first allocate a message object using
/// ISteamNetworkingUtils::AllocateMessage. (Do not declare one
/// on the stack or allocate your own.)
///
/// You should fill in the message payload. You can either let
/// it allocate the buffer for you and then fill in the payload,
/// or if you already have a buffer allocated, you can just point
/// m_pData at your buffer and set the callback to the appropriate function
/// to free it. Note that if you use your own buffer, it MUST remain valid
/// until the callback is executed. And also note that your callback can be
/// invoked at ant time from any thread (perhaps even before SendMessages
/// returns!), so it MUST be fast and threadsafe.
///
/// You MUST also fill in:
/// - m_conn - the handle of the connection to send the message to
/// - m_nFlags - bitmask of k_nSteamNetworkingSend_xxx flags.
///
/// All other fields are currently reserved and should not be modified.
///
/// The library will take ownership of the message structures. They may
/// be modified or become invalid at any time, so you must not read them
/// after passing them to this function.
///
/// pOutMessageNumberOrResult is an optional array that will receive,
/// for each message, the message number that was assigned to the message
/// if sending was successful. If sending failed, then a negative EResult
/// valid is placed into the array. For example, the array will hold
/// -k_EResultInvalidState if the connection was in an invalid state.
/// See ISteamNetworkingSockets::SendMessageToConnection for possible
/// failure codes.
void Steam_Networking_Sockets : : SendMessages ( int nMessages , SteamNetworkingMessage_t * const * pMessages , int64 * pOutMessageNumberOrResult )
{
PRINT_DEBUG_ENTRY ( ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
for ( int i = 0 ; i < nMessages ; + + i ) {
int64 out_number = 0 ;
int result = SendMessageToConnection ( pMessages [ i ] - > m_conn , pMessages [ i ] - > m_pData , pMessages [ i ] - > m_cbSize , pMessages [ i ] - > m_nFlags , & out_number ) ;
if ( pOutMessageNumberOrResult ) {
if ( result = = k_EResultOK ) {
pOutMessageNumberOrResult [ i ] = out_number ;
} else {
pOutMessageNumberOrResult [ i ] = - result ;
}
}
pMessages [ i ] - > m_pfnFreeData ( pMessages [ i ] ) ;
pMessages [ i ] - > Release ( ) ;
}
}
/// If Nagle is enabled (its on by default) then when calling
/// SendMessageToConnection the message will be queued up the Nagle time
/// before being sent to merge small messages into the same packet.
///
/// Call this function to flush any queued messages and send them immediately
/// on the next transmission time (often that means right now).
EResult Steam_Networking_Sockets : : FlushMessagesOnConnection ( HSteamNetConnection hConn )
{
PRINT_DEBUG_TODO ( ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
return k_EResultOK ;
}
/// Fetch the next available message(s) from the connection, if any.
/// Returns the number of messages returned into your array, up to nMaxMessages.
/// If the connection handle is invalid, -1 is returned.
///
/// The order of the messages returned in the array is relevant.
/// Reliable messages will be received in the order they were sent (and with the
/// same sizes --- see SendMessageToConnection for on this subtle difference from a stream socket).
///
/// Unreliable messages may be dropped, or delivered out of order withrespect to
/// each other or with respect to reliable messages. The same unreliable message
/// may be received multiple times.
///
/// If any messages are returned, you MUST call SteamNetworkingMessage_t::Release() on each
/// of them free up resources after you are done. It is safe to keep the object alive for
/// a little while (put it into some queue, etc), and you may call Release() from any thread.
int Steam_Networking_Sockets : : ReceiveMessagesOnConnection ( HSteamNetConnection hConn , SteamNetworkingMessage_t * * ppOutMessages , int nMaxMessages )
{
PRINT_DEBUG ( " %u %i " , hConn , nMaxMessages ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
if ( ! ppOutMessages | | ! nMaxMessages ) return 0 ;
SteamNetworkingMessage_t * msg = NULL ;
int messages = 0 ;
while ( messages < nMaxMessages & & ( msg = get_steam_message_connection ( hConn ) ) ) {
ppOutMessages [ messages ] = msg ;
+ + messages ;
}
PRINT_DEBUG ( " messages %u " , messages ) ;
return messages ;
}
/// Same as ReceiveMessagesOnConnection, but will return the next message available
/// on any connection that was accepted through the specified listen socket. Examine
/// SteamNetworkingMessage_t::m_conn to know which client connection.
///
/// Delivery order of messages among different clients is not defined. They may
/// be returned in an order different from what they were actually received. (Delivery
/// order of messages from the same client is well defined, and thus the order of the
/// messages is relevant!)
int Steam_Networking_Sockets : : ReceiveMessagesOnListenSocket ( HSteamListenSocket hSocket , SteamNetworkingMessage_t * * ppOutMessages , int nMaxMessages )
{
PRINT_DEBUG ( " %u %i " , hSocket , nMaxMessages ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
if ( ! ppOutMessages | | ! nMaxMessages ) return 0 ;
SteamNetworkingMessage_t * msg = NULL ;
int messages = 0 ;
auto socket_conn = std : : begin ( sbcs - > connect_sockets ) ;
while ( socket_conn ! = std : : end ( sbcs - > connect_sockets ) & & messages < nMaxMessages ) {
if ( socket_conn - > second . listen_socket_id = = hSocket ) {
while ( messages < nMaxMessages & & ( msg = get_steam_message_connection ( socket_conn - > first ) ) ) {
ppOutMessages [ messages ] = msg ;
+ + messages ;
}
}
+ + socket_conn ;
}
return messages ;
}
/// Returns basic information about the high-level state of the connection.
bool Steam_Networking_Sockets : : GetConnectionInfo ( HSteamNetConnection hConn , SteamNetConnectionInfo_t * pInfo )
{
PRINT_DEBUG_ENTRY ( ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
if ( ! pInfo ) return false ;
auto connect_socket = sbcs - > connect_sockets . find ( hConn ) ;
if ( connect_socket = = sbcs - > connect_sockets . end ( ) ) return false ;
set_steamnetconnectioninfo ( connect_socket , pInfo ) ;
//Note some games might not allocate a struct the whole size of SteamNetConnectionInfo_t
//keep this in mind in future interface updates
return true ;
}
/// Returns a small set of information about the real-time state of the connection
/// and the queue status of each lane.
///
/// - pStatus may be NULL if the information is not desired. (E.g. you are only interested
/// in the lane information.)
/// - On entry, nLanes specifies the length of the pLanes array. This may be 0
/// if you do not wish to receive any lane data. It's OK for this to be smaller than
/// the total number of configured lanes.
/// - pLanes points to an array that will receive lane-specific info. It can be NULL
/// if this is not needed.
///
/// Return value:
/// - k_EResultNoConnection - connection handle is invalid or connection has been closed.
/// - k_EResultInvalidParam - nLanes is bad
EResult Steam_Networking_Sockets : : GetConnectionRealTimeStatus ( HSteamNetConnection hConn , SteamNetConnectionRealTimeStatus_t * pStatus , int nLanes , SteamNetConnectionRealTimeLaneStatus_t * pLanes )
{
2024-08-10 11:45:51 +03:00
PRINT_DEBUG ( " %u %p %i %p " , hConn , pStatus , nLanes , pLanes ) ;
2024-05-03 01:29:57 +03:00
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
auto connect_socket = sbcs - > connect_sockets . find ( hConn ) ;
if ( connect_socket = = sbcs - > connect_sockets . end ( ) ) return k_EResultNoConnection ;
if ( pStatus ) {
pStatus - > m_eState = convert_status ( connect_socket - > second . status ) ;
pStatus - > m_nPing = 10 ; //TODO: calculate real numbers?
pStatus - > m_flConnectionQualityLocal = 1.0 ;
pStatus - > m_flConnectionQualityRemote = 1.0 ;
//TODO: rest
pStatus - > m_flOutPacketsPerSec = 0.0 ;
pStatus - > m_flOutBytesPerSec = 0.0 ;
pStatus - > m_flInPacketsPerSec = 0.0 ;
pStatus - > m_flInBytesPerSec = 0.0 ;
2024-05-25 14:59:13 +02:00
pStatus - > m_cbSentUnackedReliable = 0 ;
2024-05-27 14:33:45 +02:00
pStatus - > m_usecQueueTime = 0 ;
2024-05-03 01:29:57 +03:00
//Note some games (volcanoids) might not allocate a struct the whole size of SteamNetworkingQuickConnectionStatus
//keep this in mind in future interface updates
//NOTE: need to implement GetQuickConnectionStatus seperately if this changes.
}
//TODO: lanes
return k_EResultOK ;
}
/// Fetch the next available message(s) from the socket, if any.
/// Returns the number of messages returned into your array, up to nMaxMessages.
/// If the connection handle is invalid, -1 is returned.
///
/// The order of the messages returned in the array is relevant.
/// Reliable messages will be received in the order they were sent (and with the
/// same sizes --- see SendMessageToConnection for on this subtle difference from a stream socket).
///
/// FIXME - We're still debating the exact set of guarantees for unreliable, so this might change.
/// Unreliable messages may not be received. The order of delivery of unreliable messages
/// is NOT specified. They may be received out of order with respect to each other or
/// reliable messages. They may be received multiple times!
///
/// If any messages are returned, you MUST call Release() to each of them free up resources
/// after you are done. It is safe to keep the object alive for a little while (put it
/// into some queue, etc), and you may call Release() from any thread.
int Steam_Networking_Sockets : : ReceiveMessagesOnConnection ( HSteamNetConnection hConn , SteamNetworkingMessage001_t * * ppOutMessages , int nMaxMessages )
{
PRINT_DEBUG_TODO ( ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
return - 1 ;
}
/// Same as ReceiveMessagesOnConnection, but will return the next message available
/// on any client socket that was accepted through the specified listen socket. Examine
/// SteamNetworkingMessage_t::m_conn to know which client connection.
///
/// Delivery order of messages among different clients is not defined. They may
/// be returned in an order different from what they were actually received. (Delivery
/// order of messages from the same client is well defined, and thus the order of the
/// messages is relevant!)
int Steam_Networking_Sockets : : ReceiveMessagesOnListenSocket ( HSteamListenSocket hSocket , SteamNetworkingMessage001_t * * ppOutMessages , int nMaxMessages )
{
PRINT_DEBUG_TODO ( ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
return - 1 ;
}
/// Returns information about the specified connection.
bool Steam_Networking_Sockets : : GetConnectionInfo ( HSteamNetConnection hConn , SteamNetConnectionInfo001_t * pInfo )
{
PRINT_DEBUG_TODO ( ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
return false ;
}
/// Returns brief set of connection status that you might want to display
/// to the user in game.
bool Steam_Networking_Sockets : : GetQuickConnectionStatus ( HSteamNetConnection hConn , SteamNetworkingQuickConnectionStatus * pStats )
{
PRINT_DEBUG_ENTRY ( ) ;
2024-09-16 13:06:42 +08:00
// based on reversing the vftable returned from original steamclient64.dll
/*
. . .
xor r9d , r9d // int nLanes = 0
mov qword ptr ss : [ rsp + 0x20 ] , 0x0 // SteamNetConnectionRealTimeLaneStatus_t *pLanes = nullptr
. . .
call qword ptr ds : [ rax + 0x80 ] // call GetConnectionRealTimeStatus(hConn, pStatus, nLanes, pLanes)
test eax , eax
setne al if ( eax ! = 0 ) { al = 1 } else { al = 0 }
. . .
ret
*/
return GetConnectionRealTimeStatus ( hConn , pStats , 0 , NULL ) ! = k_EResultNone ;
2024-05-03 01:29:57 +03:00
}
/// Returns detailed connection stats in text format. Useful
/// for dumping to a log, etc.
///
/// Returns:
/// -1 failure (bad connection handle)
/// 0 OK, your buffer was filled in and '\0'-terminated
/// >0 Your buffer was either nullptr, or it was too small and the text got truncated. Try again with a buffer of at least N bytes.
int Steam_Networking_Sockets : : GetDetailedConnectionStatus ( HSteamNetConnection hConn , char * pszBuf , int cbBuf )
{
PRINT_DEBUG_TODO ( ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
return - 1 ;
}
/// Returns local IP and port that a listen socket created using CreateListenSocketIP is bound to.
///
/// An IPv6 address of ::0 means "any IPv4 or IPv6"
/// An IPv6 address of ::ffff:0000:0000 means "any IPv4"
bool Steam_Networking_Sockets : : GetListenSocketAddress ( HSteamListenSocket hSocket , SteamNetworkingIPAddr * address )
{
PRINT_DEBUG_TODO ( ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
return false ;
}
/// Returns information about the listen socket.
///
/// *pnIP and *pnPort will be 0 if the socket is set to listen for connections based
/// on SteamID only. If your listen socket accepts connections on IPv4, then both
/// fields will return nonzero, even if you originally passed a zero IP. However,
/// note that the address returned may be a private address (e.g. 10.0.0.x or 192.168.x.x),
/// and may not be reachable by a general host on the Internet.
bool Steam_Networking_Sockets : : GetListenSocketInfo ( HSteamListenSocket hSocket , uint32 * pnIP , uint16 * pnPort )
{
PRINT_DEBUG_ENTRY ( ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
struct Listen_Socket * socket = get_connection_socket ( hSocket ) ;
if ( ! socket ) return false ;
if ( pnIP ) * pnIP = 0 ; //socket->ip;
if ( pnPort ) * pnPort = 0 ; //socket->port;
return true ;
}
/// Create a pair of connections that are talking to each other, e.g. a loopback connection.
/// This is very useful for testing, or so that your client/server code can work the same
/// even when you are running a local "server".
///
/// The two connections will immediately be placed into the connected state, and no callbacks
/// will be posted immediately. After this, if you close either connection, the other connection
/// will receive a callback, exactly as if they were communicating over the network. You must
/// close *both* sides in order to fully clean up the resources!
///
/// By default, internal buffers are used, completely bypassing the network, the chopping up of
/// messages into packets, encryption, copying the payload, etc. This means that loopback
/// packets, by default, will not simulate lag or loss. Passing true for bUseNetworkLoopback will
/// cause the socket pair to send packets through the local network loopback device (127.0.0.1)
/// on ephemeral ports. Fake lag and loss are supported in this case, and CPU time is expended
/// to encrypt and decrypt.
///
/// The SteamID assigned to both ends of the connection will be the SteamID of this interface.
bool Steam_Networking_Sockets : : CreateSocketPair ( HSteamNetConnection * pOutConnection1 , HSteamNetConnection * pOutConnection2 , bool bUseNetworkLoopback )
{
PRINT_DEBUG ( " old " ) ;
return CreateSocketPair ( pOutConnection1 , pOutConnection2 , bUseNetworkLoopback , NULL , NULL ) ;
}
/// Create a pair of connections that are talking to each other, e.g. a loopback connection.
/// This is very useful for testing, or so that your client/server code can work the same
/// even when you are running a local "server".
///
/// The two connections will immediately be placed into the connected state, and no callbacks
/// will be posted immediately. After this, if you close either connection, the other connection
/// will receive a callback, exactly as if they were communicating over the network. You must
/// close *both* sides in order to fully clean up the resources!
///
/// By default, internal buffers are used, completely bypassing the network, the chopping up of
/// messages into packets, encryption, copying the payload, etc. This means that loopback
/// packets, by default, will not simulate lag or loss. Passing true for bUseNetworkLoopback will
/// cause the socket pair to send packets through the local network loopback device (127.0.0.1)
/// on ephemeral ports. Fake lag and loss are supported in this case, and CPU time is expended
/// to encrypt and decrypt.
///
/// If you wish to assign a specific identity to either connection, you may pass a particular
/// identity. Otherwise, if you pass nullptr, the respective connection will assume a generic
/// "localhost" identity. If you use real network loopback, this might be translated to the
/// actual bound loopback port. Otherwise, the port will be zero.
bool Steam_Networking_Sockets : : CreateSocketPair ( HSteamNetConnection * pOutConnection1 , HSteamNetConnection * pOutConnection2 , bool bUseNetworkLoopback , const SteamNetworkingIdentity * pIdentity1 , const SteamNetworkingIdentity * pIdentity2 )
{
PRINT_DEBUG ( " %u %p %p " , bUseNetworkLoopback , pIdentity1 , pIdentity2 ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
if ( ! pOutConnection1 | | ! pOutConnection1 ) return false ;
SteamNetworkingIdentity remote_identity ;
remote_identity . SetSteamID ( settings - > get_local_steam_id ( ) ) ;
HSteamNetConnection con1 = new_connect_socket ( remote_identity , 0 , SNS_DISABLED_PORT , CONNECT_SOCKET_CONNECTED , k_HSteamListenSocket_Invalid , k_HSteamNetConnection_Invalid ) ;
HSteamNetConnection con2 = new_connect_socket ( remote_identity , 0 , SNS_DISABLED_PORT , CONNECT_SOCKET_CONNECTED , k_HSteamListenSocket_Invalid , con1 ) ;
sbcs - > connect_sockets [ con1 ] . remote_id = con2 ;
* pOutConnection1 = con1 ;
* pOutConnection2 = con2 ;
return true ;
}
/// Configure multiple outbound messages streams ("lanes") on a connection, and
/// control head-of-line blocking between them. Messages within a given lane
/// are always sent in the order they are queued, but messages from different
/// lanes may be sent out of order. Each lane has its own message number
/// sequence. The first message sent on each lane will be assigned the number 1.
///
/// Each lane has a "priority". Lower priority lanes will only be processed
/// when all higher-priority lanes are empty. The magnitudes of the priority
/// values are not relevant, only their sort order. Higher numeric values
/// take priority over lower numeric values.
///
/// Each lane also is assigned a weight, which controls the approximate proportion
/// of the bandwidth that will be consumed by the lane, relative to other lanes
/// of the same priority. (This is assuming the lane stays busy. An idle lane
/// does not build up "credits" to be be spent once a message is queued.)
/// This value is only meaningful as a proportion, relative to other lanes with
/// the same priority. For lanes with different priorities, the strict priority
/// order will prevail, and their weights relative to each other are not relevant.
/// Thus, if a lane has a unique priority value, the weight value for that lane is
/// not relevant.
///
/// Example: 3 lanes, with priorities [ 0, 10, 10 ] and weights [ (NA), 20, 5 ].
/// Messages sent on the first will always be sent first, before messages in the
/// other two lanes. Its weight value is irrelevant, since there are no other
/// lanes with priority=0. The other two lanes will share bandwidth, with the second
/// and third lanes sharing bandwidth using a ratio of approximately 4:1.
/// (The weights [ NA, 4, 1 ] would be equivalent.)
///
/// Notes:
/// - At the time of this writing, some code has performance cost that is linear
/// in the number of lanes, so keep the number of lanes to an absolute minimum.
/// 3 or so is fine; >8 is a lot. The max number of lanes on Steam is 255,
/// which is a very large number and not recommended! If you are compiling this
/// library from source, see STEAMNETWORKINGSOCKETS_MAX_LANES.)
/// - Lane priority values may be any int. Their absolute value is not relevant,
/// only the order matters.
/// - Weights must be positive, and due to implementation details, they are restricted
/// to 16-bit values. The absolute magnitudes don't matter, just the proportions.
/// - Messages sent on a lane index other than 0 have a small overhead on the wire,
/// so for maximum wire efficiency, lane 0 should be the "most common" lane, regardless
/// of priorities or weights.
/// - A connection has a single lane by default. Calling this function with
/// nNumLanes=1 is legal, but pointless, since the priority and weight values are
/// irrelevant in that case.
/// - You may reconfigure connection lanes at any time, however reducing the number of
/// lanes is not allowed.
/// - Reconfiguring lanes might restart any bandwidth sharing balancing. Usually you
/// will call this function once, near the start of the connection, perhaps after
/// exchanging a few messages.
/// - To assign all lanes the same priority, you may use pLanePriorities=NULL.
/// - If you wish all lanes with the same priority to share bandwidth equally (or
/// if no two lanes have the same priority value, and thus priority values are
/// irrelevant), you may use pLaneWeights=NULL
/// - Priorities and weights determine the order that messages are SENT on the wire.
/// There are NO GUARANTEES on the order that messages are RECEIVED! Due to packet
/// loss, out-of-order delivery, and subtle details of packet serialization, messages
/// might still be received slightly out-of-order! The *only* strong guarantee is that
/// *reliable* messages on the *same lane* will be delivered in the order they are sent.
/// - Each host configures the lanes for the packets they send; the lanes for the flow
/// in one direction are completely unrelated to the lanes in the opposite direction.
///
/// Return value:
/// - k_EResultNoConnection - bad hConn
/// - k_EResultInvalidParam - Invalid number of lanes, bad weights, or you tried to reduce the number of lanes
/// - k_EResultInvalidState - Connection is already dead, etc
///
/// See also:
/// SteamNetworkingMessage_t::m_idxLane
EResult Steam_Networking_Sockets : : ConfigureConnectionLanes ( HSteamNetConnection hConn , int nNumLanes , const int * pLanePriorities , const uint16 * pLaneWeights )
{
PRINT_DEBUG_TODO ( ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
auto connect_socket = sbcs - > connect_sockets . find ( hConn ) ;
if ( connect_socket = = sbcs - > connect_sockets . end ( ) ) return k_EResultNoConnection ;
//TODO
return k_EResultOK ;
}
/// Get the identity assigned to this interface.
/// E.g. on Steam, this is the user's SteamID, or for the gameserver interface, the SteamID assigned
/// to the gameserver. Returns false and sets the result to an invalid identity if we don't know
/// our identity yet. (E.g. GameServer has not logged in. On Steam, the user will know their SteamID
/// even if they are not signed into Steam.)
bool Steam_Networking_Sockets : : GetIdentity ( SteamNetworkingIdentity * pIdentity )
{
PRINT_DEBUG_ENTRY ( ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
if ( ! pIdentity ) return false ;
pIdentity - > SetSteamID ( settings - > get_local_steam_id ( ) ) ;
return true ;
}
/// Indicate our desire to be ready participate in authenticated communications.
/// If we are currently not ready, then steps will be taken to obtain the necessary
/// certificates. (This includes a certificate for us, as well as any CA certificates
/// needed to authenticate peers.)
///
/// You can call this at program init time if you know that you are going to
/// be making authenticated connections, so that we will be ready immediately when
/// those connections are attempted. (Note that essentially all connections require
/// authentication, with the exception of ordinary UDP connections with authentication
/// disabled using k_ESteamNetworkingConfig_IP_AllowWithoutAuth.) If you don't call
/// this function, we will wait until a feature is utilized that that necessitates
/// these resources.
///
/// You can also call this function to force a retry, if failure has occurred.
/// Once we make an attempt and fail, we will not automatically retry.
/// In this respect, the behavior of the system after trying and failing is the same
/// as before the first attempt: attempting authenticated communication or calling
/// this function will call the system to attempt to acquire the necessary resources.
///
/// You can use GetAuthenticationStatus or listen for SteamNetAuthenticationStatus_t
/// to monitor the status.
///
/// Returns the current value that would be returned from GetAuthenticationStatus.
ESteamNetworkingAvailability Steam_Networking_Sockets : : InitAuthentication ( )
{
PRINT_DEBUG_TODO ( ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
return k_ESteamNetworkingAvailability_Current ;
}
/// Query our readiness to participate in authenticated communications. A
/// SteamNetAuthenticationStatus_t callback is posted any time this status changes,
/// but you can use this function to query it at any time.
///
/// The value of SteamNetAuthenticationStatus_t::m_eAvail is returned. If you only
/// want this high level status, you can pass NULL for pDetails. If you want further
/// details, pass non-NULL to receive them.
ESteamNetworkingAvailability Steam_Networking_Sockets : : GetAuthenticationStatus ( SteamNetAuthenticationStatus_t * pDetails )
{
PRINT_DEBUG_TODO ( ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
return k_ESteamNetworkingAvailability_Current ;
}
/// Create a new poll group.
///
/// You should destroy the poll group when you are done using DestroyPollGroup
HSteamNetPollGroup Steam_Networking_Sockets : : CreatePollGroup ( )
{
PRINT_DEBUG_ENTRY ( ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
static HSteamNetPollGroup poll_group_counter ;
+ + poll_group_counter ;
HSteamNetPollGroup poll_group_number = poll_group_counter ;
sbcs - > poll_groups [ poll_group_number ] = std : : list < HSteamNetConnection > ( ) ;
return poll_group_number ;
}
/// Destroy a poll group created with CreatePollGroup().
///
/// If there are any connections in the poll group, they are removed from the group,
/// and left in a state where they are not part of any poll group.
/// Returns false if passed an invalid poll group handle.
bool Steam_Networking_Sockets : : DestroyPollGroup ( HSteamNetPollGroup hPollGroup )
{
PRINT_DEBUG_ENTRY ( ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
auto group = sbcs - > poll_groups . find ( hPollGroup ) ;
if ( group = = sbcs - > poll_groups . end ( ) ) {
return false ;
}
for ( auto c : group - > second ) {
auto connect_socket = sbcs - > connect_sockets . find ( c ) ;
if ( connect_socket ! = sbcs - > connect_sockets . end ( ) ) {
connect_socket - > second . poll_group = k_HSteamNetPollGroup_Invalid ;
}
}
sbcs - > poll_groups . erase ( group ) ;
return true ;
}
/// Assign a connection to a poll group. Note that a connection may only belong to a
/// single poll group. Adding a connection to a poll group implicitly removes it from
/// any other poll group it is in.
///
/// You can pass k_HSteamNetPollGroup_Invalid to remove a connection from its current
/// poll group without adding it to a new poll group.
///
/// If there are received messages currently pending on the connection, an attempt
/// is made to add them to the queue of messages for the poll group in approximately
/// the order that would have applied if the connection was already part of the poll
/// group at the time that the messages were received.
///
/// Returns false if the connection handle is invalid, or if the poll group handle
/// is invalid (and not k_HSteamNetPollGroup_Invalid).
bool Steam_Networking_Sockets : : SetConnectionPollGroup ( HSteamNetConnection hConn , HSteamNetPollGroup hPollGroup )
{
PRINT_DEBUG ( " %u %u " , hConn , hPollGroup ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
auto connect_socket = sbcs - > connect_sockets . find ( hConn ) ;
if ( connect_socket = = sbcs - > connect_sockets . end ( ) ) {
return false ;
}
auto group = sbcs - > poll_groups . find ( hPollGroup ) ;
if ( group = = sbcs - > poll_groups . end ( ) & & hPollGroup ! = k_HSteamNetPollGroup_Invalid ) {
return false ;
}
HSteamNetPollGroup old_poll_group = connect_socket - > second . poll_group ;
if ( old_poll_group ! = k_HSteamNetPollGroup_Invalid ) {
auto group = sbcs - > poll_groups . find ( hPollGroup ) ;
if ( group ! = sbcs - > poll_groups . end ( ) ) {
group - > second . remove ( hConn ) ;
}
}
connect_socket - > second . poll_group = hPollGroup ;
if ( hPollGroup = = k_HSteamNetPollGroup_Invalid ) {
return true ;
}
group - > second . push_back ( hConn ) ;
return true ;
}
/// Same as ReceiveMessagesOnConnection, but will return the next messages available
/// on any connection in the poll group. Examine SteamNetworkingMessage_t::m_conn
/// to know which connection. (SteamNetworkingMessage_t::m_nConnUserData might also
/// be useful.)
///
/// Delivery order of messages among different connections will usually match the
/// order that the last packet was received which completed the message. But this
/// is not a strong guarantee, especially for packets received right as a connection
/// is being assigned to poll group.
///
/// Delivery order of messages on the same connection is well defined and the
/// same guarantees are present as mentioned in ReceiveMessagesOnConnection.
/// (But the messages are not grouped by connection, so they will not necessarily
/// appear consecutively in the list; they may be interleaved with messages for
/// other connections.)
int Steam_Networking_Sockets : : ReceiveMessagesOnPollGroup ( HSteamNetPollGroup hPollGroup , SteamNetworkingMessage_t * * ppOutMessages , int nMaxMessages )
{
PRINT_DEBUG ( " %u %i " , hPollGroup , nMaxMessages ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
auto group = sbcs - > poll_groups . find ( hPollGroup ) ;
if ( group = = sbcs - > poll_groups . end ( ) ) {
return 0 ;
}
SteamNetworkingMessage_t * msg = NULL ;
int messages = 0 ;
for ( auto c : group - > second ) {
while ( messages < nMaxMessages & & ( msg = get_steam_message_connection ( c ) ) ) {
ppOutMessages [ messages ] = msg ;
+ + messages ;
}
}
PRINT_DEBUG ( " out %i " , messages ) ;
return messages ;
}
//#ifndef STEAMNETWORKINGSOCKETS_OPENSOURCE
//
// Clients connecting to dedicated servers hosted in a data center,
// using central-authority-granted tickets.
//
/// Called when we receive a ticket from our central matchmaking system. Puts the
/// ticket into a persistent cache, and optionally returns the parsed ticket.
///
/// See stamdatagram_ticketgen.h for more details.
bool Steam_Networking_Sockets : : ReceivedRelayAuthTicket ( const void * pvTicket , int cbTicket , SteamDatagramRelayAuthTicket * pOutParsedTicket )
{
PRINT_DEBUG_TODO ( ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
return false ;
}
/// Search cache for a ticket to talk to the server on the specified virtual port.
/// If found, returns the number of second until the ticket expires, and optionally
/// the complete cracked ticket. Returns 0 if we don't have a ticket.
///
/// Typically this is useful just to confirm that you have a ticket, before you
/// call ConnectToHostedDedicatedServer to connect to the server.
int Steam_Networking_Sockets : : FindRelayAuthTicketForServer ( CSteamID steamID , int nVirtualPort , SteamDatagramRelayAuthTicket * pOutParsedTicket )
{
PRINT_DEBUG ( " old " ) ;
return 0 ;
}
/// Search cache for a ticket to talk to the server on the specified virtual port.
/// If found, returns the number of seconds until the ticket expires, and optionally
/// the complete cracked ticket. Returns 0 if we don't have a ticket.
///
/// Typically this is useful just to confirm that you have a ticket, before you
/// call ConnectToHostedDedicatedServer to connect to the server.
int Steam_Networking_Sockets : : FindRelayAuthTicketForServer ( const SteamNetworkingIdentity * identityGameServer , int nVirtualPort , SteamDatagramRelayAuthTicket * pOutParsedTicket )
{
PRINT_DEBUG ( " old1 " ) ;
return 0 ;
}
int Steam_Networking_Sockets : : FindRelayAuthTicketForServer ( const SteamNetworkingIdentity & identityGameServer , int nVirtualPort , SteamDatagramRelayAuthTicket * pOutParsedTicket )
{
PRINT_DEBUG_TODO ( ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
return 0 ;
}
/// Client call to connect to a server hosted in a Valve data center, on the specified virtual
/// port. You must have placed a ticket for this server into the cache, or else this connect attempt will fail!
///
/// You may wonder why tickets are stored in a cache, instead of simply being passed as an argument
/// here. The reason is to make reconnection to a gameserver robust, even if the client computer loses
/// connection to Steam or the central backend, or the app is restarted or crashes, etc.
///
/// If you use this, you probably want to call ISteamNetworkingUtils::InitializeRelayNetworkAccess()
/// when your app initializes
HSteamNetConnection Steam_Networking_Sockets : : ConnectToHostedDedicatedServer ( const SteamNetworkingIdentity & identityTarget , int nVirtualPort )
{
PRINT_DEBUG ( " old " ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
return k_HSteamListenSocket_Invalid ;
}
HSteamNetConnection Steam_Networking_Sockets : : ConnectToHostedDedicatedServer ( const SteamNetworkingIdentity * identityTarget , int nVirtualPort )
{
PRINT_DEBUG ( " old1 " ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
return k_HSteamListenSocket_Invalid ;
}
/// Client call to connect to a server hosted in a Valve data center, on the specified virtual
/// port. You should have received a ticket for this server, or else this connect call will fail!
///
/// You may wonder why tickets are stored in a cache, instead of simply being passed as an argument
/// here. The reason is to make reconnection to a gameserver robust, even if the client computer loses
/// connection to Steam or the central backend, or the app is restarted or crashes, etc.
HSteamNetConnection Steam_Networking_Sockets : : ConnectToHostedDedicatedServer ( CSteamID steamIDTarget , int nVirtualPort )
{
PRINT_DEBUG ( " older " ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
return k_HSteamListenSocket_Invalid ;
}
HSteamNetConnection Steam_Networking_Sockets : : ConnectToHostedDedicatedServer ( const SteamNetworkingIdentity & identityTarget , int nVirtualPort , int nOptions , const SteamNetworkingConfigValue_t * pOptions )
{
PRINT_DEBUG_TODO ( ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
return k_HSteamListenSocket_Invalid ;
}
//
// Servers hosted in Valve data centers
//
/// Returns the value of the SDR_LISTEN_PORT environment variable.
uint16 Steam_Networking_Sockets : : GetHostedDedicatedServerPort ( )
{
PRINT_DEBUG_TODO ( ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
//TODO?
return 27054 ;
}
/// If you are running in a production data center, this will return the data
/// center code. Returns 0 otherwise.
SteamNetworkingPOPID Steam_Networking_Sockets : : GetHostedDedicatedServerPOPID ( )
{
PRINT_DEBUG_TODO ( ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
return 0 ;
}
/// Return info about the hosted server. You will need to send this information to your
/// backend, and put it in tickets, so that the relays will know how to forward traffic from
/// clients to your server. See SteamDatagramRelayAuthTicket for more info.
///
/// NOTE ABOUT DEVELOPMENT ENVIRONMENTS:
/// In production in our data centers, these parameters are configured via environment variables.
/// In development, the only one you need to set is SDR_LISTEN_PORT, which is the local port you
/// want to listen on. Furthermore, if you are running your server behind a corporate firewall,
/// you probably will not be able to put the routing information returned by this function into
/// tickets. Instead, it should be a public internet address that the relays can use to send
/// data to your server. So you might just end up hardcoding a public address and setup port
/// forwarding on your corporate firewall. In that case, the port you put into the ticket
/// needs to be the public-facing port opened on your firewall, if it is different from the
/// actual server port.
///
/// This function will fail if SteamDatagramServer_Init has not been called.
///
/// Returns false if the SDR_LISTEN_PORT environment variable is not set.
bool Steam_Networking_Sockets : : GetHostedDedicatedServerAddress001 ( SteamDatagramHostedAddress * pRouting )
{
PRINT_DEBUG ( " %p " , pRouting ) ;
return GetHostedDedicatedServerAddress ( pRouting ) = = k_EResultOK ;
}
/// Return info about the hosted server. This contains the PoPID of the server,
/// and opaque routing information that can be used by the relays to send traffic
/// to your server.
///
/// You will need to send this information to your backend, and put it in tickets,
/// so that the relays will know how to forward traffic from
/// clients to your server. See SteamDatagramRelayAuthTicket for more info.
///
/// Also, note that the routing information is contained in SteamDatagramGameCoordinatorServerLogin,
/// so if possible, it's preferred to use GetGameCoordinatorServerLogin to send this info
/// to your game coordinator service, and also login securely at the same time.
///
/// On a successful exit, k_EResultOK is returned
///
/// Unsuccessful exit:
/// - Something other than k_EResultOK is returned.
/// - k_EResultInvalidState: We are not configured to listen for SDR (SDR_LISTEN_SOCKET
/// is not set.)
/// - k_EResultPending: we do not (yet) have the authentication information needed.
/// (See GetAuthenticationStatus.) If you use environment variables to pre-fetch
/// the network config, this data should always be available immediately.
/// - A non-localized diagnostic debug message will be placed in m_data that describes
/// the cause of the failure.
///
/// NOTE: The returned blob is not encrypted. Send it to your backend, but don't
/// directly share it with clients.
EResult Steam_Networking_Sockets : : GetHostedDedicatedServerAddress ( SteamDatagramHostedAddress * pRouting )
{
PRINT_DEBUG ( " %p " , pRouting ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
pRouting - > SetDevAddress ( network - > getOwnIP ( ) , 27054 ) ;
return k_EResultOK ;
}
/// Create a listen socket on the specified virtual port. The physical UDP port to use
/// will be determined by the SDR_LISTEN_PORT environment variable. If a UDP port is not
/// configured, this call will fail.
///
/// Note that this call MUST be made through the SteamNetworkingSocketsGameServer() interface
HSteamListenSocket Steam_Networking_Sockets : : CreateHostedDedicatedServerListenSocket ( int nVirtualPort )
{
PRINT_DEBUG ( " old %i " , nVirtualPort ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
return new_listen_socket ( nVirtualPort , SNS_DISABLED_PORT ) ;
}
/// Create a listen socket on the specified virtual port. The physical UDP port to use
/// will be determined by the SDR_LISTEN_PORT environment variable. If a UDP port is not
/// configured, this call will fail.
///
/// Note that this call MUST be made through the SteamGameServerNetworkingSockets() interface
///
/// If you need to set any initial config options, pass them here. See
/// SteamNetworkingConfigValue_t for more about why this is preferable to
/// setting the options "immediately" after creation.
HSteamListenSocket Steam_Networking_Sockets : : CreateHostedDedicatedServerListenSocket ( int nVirtualPort , int nOptions , const SteamNetworkingConfigValue_t * pOptions )
{
PRINT_DEBUG ( " old %i " , nVirtualPort ) ;
//TODO config options
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
return new_listen_socket ( nVirtualPort , SNS_DISABLED_PORT ) ;
}
//#endif // #ifndef STEAMNETWORKINGSOCKETS_OPENSOURCE
//
// Gets some debug text from the connection
//
bool Steam_Networking_Sockets : : GetConnectionDebugText ( HSteamNetConnection hConn , char * pOut , int nOutCCH )
{
PRINT_DEBUG_TODO ( ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
return false ;
}
//
// Set and get configuration values, see ESteamNetworkingConfigurationValue for individual descriptions.
//
// Returns the value or -1 is eConfigValue is invalid
int32 Steam_Networking_Sockets : : GetConfigurationValue ( ESteamNetworkingConfigurationValue eConfigValue )
{
PRINT_DEBUG_TODO ( ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
return - 1 ;
}
// Returns true if successfully set
bool Steam_Networking_Sockets : : SetConfigurationValue ( ESteamNetworkingConfigurationValue eConfigValue , int32 nValue )
{
PRINT_DEBUG ( " %i: %i " , eConfigValue , nValue ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
return true ;
}
// Return the name of an int configuration value, or NULL if config value isn't known
const char * Steam_Networking_Sockets : : GetConfigurationValueName ( ESteamNetworkingConfigurationValue eConfigValue )
{
PRINT_DEBUG_TODO ( ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
return NULL ;
}
//
// Set and get configuration strings, see ESteamNetworkingConfigurationString for individual descriptions.
//
// Get the configuration string, returns length of string needed if pDest is nullpr or destSize is 0
// returns -1 if the eConfigValue is invalid
int32 Steam_Networking_Sockets : : GetConfigurationString ( ESteamNetworkingConfigurationString eConfigString , char * pDest , int32 destSize )
{
PRINT_DEBUG_TODO ( ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
return - 1 ;
}
bool Steam_Networking_Sockets : : SetConfigurationString ( ESteamNetworkingConfigurationString eConfigString , const char * pString )
{
PRINT_DEBUG_TODO ( ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
return false ;
}
// Return the name of a string configuration value, or NULL if config value isn't known
const char * Steam_Networking_Sockets : : GetConfigurationStringName ( ESteamNetworkingConfigurationString eConfigString )
{
PRINT_DEBUG_TODO ( ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
return NULL ;
}
//
// Set and get configuration values, see ESteamNetworkingConnectionConfigurationValue for individual descriptions.
//
// Returns the value or -1 is eConfigValue is invalid
int32 Steam_Networking_Sockets : : GetConnectionConfigurationValue ( HSteamNetConnection hConn , ESteamNetworkingConnectionConfigurationValue eConfigValue )
{
PRINT_DEBUG_TODO ( ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
return - 1 ;
}
// Returns true if successfully set
bool Steam_Networking_Sockets : : SetConnectionConfigurationValue ( HSteamNetConnection hConn , ESteamNetworkingConnectionConfigurationValue eConfigValue , int32 nValue )
{
PRINT_DEBUG_TODO ( ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
return false ;
}
/// Generate an authentication blob that can be used to securely login with
/// your backend, using SteamDatagram_ParseHostedServerLogin. (See
/// steamdatagram_gamecoordinator.h)
///
/// Before calling the function:
/// - Populate the app data in pLoginInfo (m_cbAppData and m_appData). You can leave
/// all other fields uninitialized.
/// - *pcbSignedBlob contains the size of the buffer at pBlob. (It should be
/// at least k_cbMaxSteamDatagramGameCoordinatorServerLoginSerialized.)
///
/// On a successful exit:
/// - k_EResultOK is returned
/// - All of the remaining fields of pLoginInfo will be filled out.
/// - *pcbSignedBlob contains the size of the serialized blob that has been
/// placed into pBlob.
///
/// Unsuccessful exit:
/// - Something other than k_EResultOK is returned.
/// - k_EResultNotLoggedOn: you are not logged in (yet)
/// - See GetHostedDedicatedServerAddress for more potential failure return values.
/// - A non-localized diagnostic debug message will be placed in pBlob that describes
/// the cause of the failure.
///
/// This works by signing the contents of the SteamDatagramGameCoordinatorServerLogin
/// with the cert that is issued to this server. In dev environments, it's OK if you do
/// not have a cert. (You will need to enable insecure dev login in SteamDatagram_ParseHostedServerLogin.)
/// Otherwise, you will need a signed cert.
///
/// NOTE: The routing blob returned here is not encrypted. Send it to your backend
/// and don't share it directly with clients.
EResult Steam_Networking_Sockets : : GetGameCoordinatorServerLogin ( SteamDatagramGameCoordinatorServerLogin * pLoginInfo , int * pcbSignedBlob , void * pBlob )
{
PRINT_DEBUG_TODO ( ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
return k_EResultFail ;
}
//
// Relayed connections using custom signaling protocol
//
// This is used if you have your own method of sending out-of-band
// signaling / rendezvous messages through a mutually trusted channel.
//
/// Create a P2P "client" connection that does signaling over a custom
/// rendezvous/signaling channel.
///
/// pSignaling points to a new object that you create just for this connection.
/// It must stay valid until Release() is called. Once you pass the
/// object to this function, it assumes ownership. Release() will be called
/// from within the function call if the call fails. Furthermore, until Release()
/// is called, you should be prepared for methods to be invoked on your
/// object from any thread! You need to make sure your object is threadsafe!
/// Furthermore, you should make sure that dispatching the methods is done
/// as quickly as possible.
///
/// This function will immediately construct a connection in the "connecting"
/// state. Soon after (perhaps before this function returns, perhaps in another thread),
/// the connection will begin sending signaling messages by calling
/// ISteamNetworkingConnectionCustomSignaling::SendSignal.
///
/// When the remote peer accepts the connection (See
/// ISteamNetworkingCustomSignalingRecvContext::OnConnectRequest),
/// it will begin sending signaling messages. When these messages are received,
/// you can pass them to the connection using ReceivedP2PCustomSignal.
///
/// If you know the identity of the peer that you expect to be on the other end,
/// you can pass their identity to improve debug output or just detect bugs.
/// If you don't know their identity yet, you can pass NULL, and their
/// identity will be established in the connection handshake.
///
/// If you use this, you probably want to call ISteamNetworkingUtils::InitRelayNetworkAccess()
/// when your app initializes
///
/// If you need to set any initial config options, pass them here. See
/// SteamNetworkingConfigValue_t for more about why this is preferable to
/// setting the options "immediately" after creation.
HSteamNetConnection Steam_Networking_Sockets : : ConnectP2PCustomSignaling ( ISteamNetworkingConnectionCustomSignaling * pSignaling , const SteamNetworkingIdentity * pPeerIdentity , int nOptions , const SteamNetworkingConfigValue_t * pOptions )
{
PRINT_DEBUG ( " old " ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
//return ConnectP2PCustomSignaling(pSignaling, pPeerIdentity, 0, nOptions, pOptions);
return k_HSteamNetConnection_Invalid ;
}
//HSteamNetConnection ConnectP2PCustomSignaling( ISteamNetworkingConnectionCustomSignaling *pSignaling, const SteamNetworkingIdentity *pPeerIdentity, int nRemoteVirtualPort, int nOptions, const SteamNetworkingConfigValue_t *pOptions )
HSteamNetConnection Steam_Networking_Sockets : : ConnectP2PCustomSignaling ( ISteamNetworkingConnectionSignaling * pSignaling , const SteamNetworkingIdentity * pPeerIdentity , int nRemoteVirtualPort , int nOptions , const SteamNetworkingConfigValue_t * pOptions )
{
PRINT_DEBUG_TODO ( ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
return k_HSteamNetConnection_Invalid ;
}
/// Called when custom signaling has received a message. When your
/// signaling channel receives a message, it should save off whatever
/// routing information was in the envelope into the context object,
/// and then pass the payload to this function.
///
/// A few different things can happen next, depending on the message:
///
/// - If the signal is associated with existing connection, it is dealt
/// with immediately. If any replies need to be sent, they will be
/// dispatched using the ISteamNetworkingConnectionCustomSignaling
/// associated with the connection.
/// - If the message represents a connection request (and the request
/// is not redundant for an existing connection), a new connection
/// will be created, and ReceivedConnectRequest will be called on your
/// context object to determine how to proceed.
/// - Otherwise, the message is for a connection that does not
/// exist (anymore). In this case, we *may* call SendRejectionReply
/// on your context object.
///
/// In any case, we will not save off pContext or access it after this
/// function returns.
///
/// Returns true if the message was parsed and dispatched without anything
/// unusual or suspicious happening. Returns false if there was some problem
/// with the message that prevented ordinary handling. (Debug output will
/// usually have more information.)
///
/// If you expect to be using relayed connections, then you probably want
/// to call ISteamNetworkingUtils::InitRelayNetworkAccess() when your app initializes
bool Steam_Networking_Sockets : : ReceivedP2PCustomSignal ( const void * pMsg , int cbMsg , ISteamNetworkingCustomSignalingRecvContext * pContext )
{
PRINT_DEBUG ( " old " ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
return false ;
}
bool Steam_Networking_Sockets : : ReceivedP2PCustomSignal ( const void * pMsg , int cbMsg , ISteamNetworkingSignalingRecvContext * pContext )
{
PRINT_DEBUG_TODO ( ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
return false ;
}
//
// Certificate provision by the application. On Steam, we normally handle all this automatically
// and you will not need to use these advanced functions.
//
/// Get blob that describes a certificate request. You can send this to your game coordinator.
/// Upon entry, *pcbBlob should contain the size of the buffer. On successful exit, it will
/// return the number of bytes that were populated. You can pass pBlob=NULL to query for the required
/// size. (256 bytes is a very conservative estimate.)
///
/// Pass this blob to your game coordinator and call SteamDatagram_CreateCert.
bool Steam_Networking_Sockets : : GetCertificateRequest ( int * pcbBlob , void * pBlob , SteamNetworkingErrMsg & errMsg )
{
PRINT_DEBUG_TODO ( ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
return false ;
}
/// Set the certificate. The certificate blob should be the output of
/// SteamDatagram_CreateCert.
bool Steam_Networking_Sockets : : SetCertificate ( const void * pCertificate , int cbCertificate , SteamNetworkingErrMsg & errMsg )
{
PRINT_DEBUG_TODO ( ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
return false ;
}
/// Reset the identity associated with this instance.
/// Any open connections are closed. Any previous certificates, etc are discarded.
/// You can pass a specific identity that you want to use, or you can pass NULL,
/// in which case the identity will be invalid until you set it using SetCertificate
///
/// NOTE: This function is not actually supported on Steam! It is included
/// for use on other platforms where the active user can sign out and
/// a new user can sign in.
void Steam_Networking_Sockets : : ResetIdentity ( const SteamNetworkingIdentity * pIdentity )
{
PRINT_DEBUG_TODO ( ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
}
//
// "FakeIP" system.
//
// A FakeIP is essentially a temporary, arbitrary identifier that
// happens to be a valid IPv4 address. The purpose of this system is to make it
// easy to integrate with existing code that identifies hosts using IPv4 addresses.
// The FakeIP address will never actually be used to send or receive any packets
// on the Internet, it is strictly an identifier.
//
// FakeIP addresses are designed to (hopefully) pass through existing code as
// transparently as possible, while conflicting with "real" addresses that might
// be in use on networks (both the Internet and LANs) in the same code as little
// as possible. At the time this comment is being written, they come from the
// 169.254.0.0/16 range, and the port number will always be >1024. HOWEVER,
// this is subject to change! Do not make assumptions about these addresses,
// or your code might break in the future. In particular, you should use
// functions such as ISteamNetworkingUtils::IsFakeIP to determine if an IP
// address is a "fake" one used by this system.
//
/// Begin asynchronous process of allocating a fake IPv4 address that other
/// peers can use to contact us via P2P. IP addresses returned by this
/// function are globally unique for a given appid.
///
/// nNumPorts is the numbers of ports you wish to reserve. This is useful
/// for the same reason that listening on multiple UDP ports is useful for
/// different types of traffic. Because these allocations come from a global
/// namespace, there is a relatively strict limit on the maximum number of
/// ports you may request. (At the time of this writing, the limit is 4.)
/// The Port assignments are *not* guaranteed to have any particular order
/// or relationship! Do *not* assume they are contiguous, even though that
/// may often occur in practice.
///
/// Returns false if a request was already in progress, true if a new request
/// was started. A SteamNetworkingFakeIPResult_t will be posted when the request
/// completes.
///
/// For gameservers, you *must* call this after initializing the SDK but before
/// beginning login. Steam needs to know in advance that FakeIP will be used.
/// Everywhere your public IP would normally appear (such as the server browser) will be
/// replaced by the FakeIP, and the fake port at index 0. The request is actually queued
/// until the logon completes, so you must not wait until the allocation completes
/// before logging in. Except for trivial failures that can be detected locally
/// (e.g. invalid parameter), a SteamNetworkingFakeIPResult_t callback (whether success or
/// failure) will not be posted until after we have logged in. Furthermore, it is assumed
/// that FakeIP allocation is essential for your application to function, and so failure
/// will not be reported until *several* retries have been attempted. This process may
/// last several minutes. It is *highly* recommended to treat failure as fatal.
///
/// To communicate using a connection-oriented (TCP-style) API:
/// - Server creates a listen socket using CreateListenSocketP2PFakeIP
/// - Client connects using ConnectByIPAddress, passing in the FakeIP address.
/// - The connection will behave mostly like a P2P connection. The identities
/// that appear in SteamNetConnectionInfo_t will be the FakeIP identity until
/// we know the real identity. Then it will be the real identity. If the
/// SteamNetConnectionInfo_t::m_addrRemote is valid, it will be a real IPv4
/// address of a NAT-punched connection. Otherwise, it will not be valid.
///
/// To communicate using an ad-hoc sendto/recv from (UDP-style) API,
/// use CreateFakeUDPPort.
bool Steam_Networking_Sockets : : BeginAsyncRequestFakeIP ( int nNumPorts )
{
PRINT_DEBUG_TODO ( ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
return false ;
}
/// Return info about the FakeIP and port(s) that we have been assigned,
/// if any. idxFirstPort is currently reserved and must be zero.
/// Make sure and check SteamNetworkingFakeIPResult_t::m_eResult
void Steam_Networking_Sockets : : GetFakeIP ( int idxFirstPort , SteamNetworkingFakeIPResult_t * pInfo )
{
PRINT_DEBUG_TODO ( ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
}
/// Create a listen socket that will listen for P2P connections sent
/// to our FakeIP. A peer can initiate connections to this listen
/// socket by calling ConnectByIPAddress.
///
/// idxFakePort refers to the *index* of the fake port requested,
/// not the actual port number. For example, pass 0 to refer to the
/// first port in the reservation. You must call this only after calling
/// BeginAsyncRequestFakeIP. However, you do not need to wait for the
/// request to complete before creating the listen socket.
HSteamListenSocket Steam_Networking_Sockets : : CreateListenSocketP2PFakeIP ( int idxFakePort , int nOptions , const SteamNetworkingConfigValue_t * pOptions )
{
PRINT_DEBUG_TODO ( ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
return k_HSteamListenSocket_Invalid ;
}
/// If the connection was initiated using the "FakeIP" system, then we
/// we can get an IP address for the remote host. If the remote host had
/// a global FakeIP at the time the connection was established, this
/// function will return that global IP. Otherwise, a FakeIP that is
/// unique locally will be allocated from the local FakeIP address space,
/// and that will be returned.
///
/// The allocation of local FakeIPs attempts to assign addresses in
/// a consistent manner. If multiple connections are made to the
/// same remote host, they *probably* will return the same FakeIP.
/// However, since the namespace is limited, this cannot be guaranteed.
///
/// On failure, returns:
/// - k_EResultInvalidParam: invalid connection handle
/// - k_EResultIPNotFound: This connection wasn't made using FakeIP system
EResult Steam_Networking_Sockets : : GetRemoteFakeIPForConnection ( HSteamNetConnection hConn , SteamNetworkingIPAddr * pOutAddr )
{
PRINT_DEBUG_TODO ( ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
return k_EResultNone ;
}
/// Get an interface that can be used like a UDP port to send/receive
/// datagrams to a FakeIP address. This is intended to make it easy
/// to port existing UDP-based code to take advantage of SDR.
///
/// idxFakeServerPort refers to the *index* of the port allocated using
/// BeginAsyncRequestFakeIP and is used to create "server" ports. You may
/// call this before the allocation has completed. However, any attempts
/// to send packets will fail until the allocation has succeeded. When
/// the peer receives packets sent from this interface, the from address
/// of the packet will be the globally-unique FakeIP. If you call this
/// function multiple times and pass the same (nonnegative) fake port index,
/// the same object will be returned, and this object is not reference counted.
///
/// To create a "client" port (e.g. the equivalent of an ephemeral UDP port)
/// pass -1. In this case, a distinct object will be returned for each call.
/// When the peer receives packets sent from this interface, the peer will
/// assign a FakeIP from its own locally-controlled namespace.
ISteamNetworkingFakeUDPPort * Steam_Networking_Sockets : : CreateFakeUDPPort ( int idxFakeServerPort )
{
PRINT_DEBUG_TODO ( ) ;
std : : lock_guard < std : : recursive_mutex > lock ( global_mutex ) ;
return NULL ;
}
// TEMP KLUDGE Call to invoke all queued callbacks.
// Eventually this function will go away, and callwacks will be ordinary Steamworks callbacks.
// You should call this at the same time you call SteamAPI_RunCallbacks and SteamGameServer_RunCallbacks
// to minimize potential changes in timing when that change happens.
void Steam_Networking_Sockets : : RunCallbacks ( ISteamNetworkingSocketsCallbacks * pCallbacks )
{
// PRINT_DEBUG_ENTRY();
}
void Steam_Networking_Sockets : : RunCallbacks ( )
{
// PRINT_DEBUG_ENTRY();
//TODO: timeout unaccepted connections after a few seconds or so
auto current_time = std : : chrono : : steady_clock : : now ( ) ;
auto socket_conn = std : : begin ( sbcs - > connect_sockets ) ;
while ( socket_conn ! = std : : end ( sbcs - > connect_sockets ) ) {
if ( socket_conn - > second . connect_requests_sent < 10 & & socket_conn - > second . status = = CONNECT_SOCKET_CONNECTING & & ( std : : chrono : : duration_cast < std : : chrono : : milliseconds > ( current_time - socket_conn - > second . connect_request_last_sent ) . count ( ) > 3000 ) ) {
send_packet_new_connection ( socket_conn - > first ) ;
socket_conn - > second . connect_request_last_sent = current_time ;
socket_conn - > second . connect_requests_sent + = 1 ;
}
+ + socket_conn ;
}
}
void Steam_Networking_Sockets : : Callback ( Common_Message * msg )
{
// PRINT_DEBUG_ENTRY();
if ( msg - > has_low_level ( ) ) {
if ( msg - > low_level ( ) . type ( ) = = Low_Level : : CONNECT ) {
}
if ( msg - > low_level ( ) . type ( ) = = Low_Level : : DISCONNECT ) {
for ( auto & connect_socket : sbcs - > connect_sockets ) {
if ( connect_socket . second . remote_identity . GetSteamID64 ( ) = = msg - > source_id ( ) ) {
enum connect_socket_status old_status = connect_socket . second . status ;
connect_socket . second . status = CONNECT_SOCKET_TIMEDOUT ;
launch_callback ( connect_socket . first , old_status ) ;
}
}
}
}
if ( msg - > has_networking_sockets ( ) ) {
PRINT_DEBUG ( " got network socket msg %u " " % " PRIu64 " " , msg - > networking_sockets ( ) . type ( ) , msg - > source_id ( ) ) ;
if ( msg - > networking_sockets ( ) . type ( ) = = Networking_Sockets : : CONNECTION_REQUEST ) {
int virtual_port = msg - > networking_sockets ( ) . virtual_port ( ) ;
int real_port = msg - > networking_sockets ( ) . real_port ( ) ;
uint64 dest_id = msg - > dest_id ( ) ;
std : : vector < Listen_Socket > : : iterator conn ;
if ( virtual_port = = SNS_DISABLED_PORT ) {
conn = std : : find_if ( sbcs - > listen_sockets . begin ( ) , sbcs - > listen_sockets . end ( ) , [ & real_port , & dest_id ] ( struct Listen_Socket const & conn ) { return conn . real_port = = real_port & & dest_id = = conn . created_by . ConvertToUint64 ( ) ; } ) ;
} else {
conn = std : : find_if ( sbcs - > listen_sockets . begin ( ) , sbcs - > listen_sockets . end ( ) , [ & virtual_port , & dest_id ] ( struct Listen_Socket const & conn ) { return conn . virtual_port = = virtual_port & & dest_id = = conn . created_by . ConvertToUint64 ( ) ; } ) ;
}
if ( conn ! = sbcs - > listen_sockets . end ( ) ) {
auto connect_socket = std : : find_if ( sbcs - > connect_sockets . begin ( ) , sbcs - > connect_sockets . end ( ) , [ msg ] ( const auto & in ) { return in . second . remote_identity . GetSteamID64 ( ) = = msg - > source_id ( ) & & ( in . second . status = = CONNECT_SOCKET_NOT_ACCEPTED | | in . second . status = = CONNECT_SOCKET_CONNECTED ) & & in . second . remote_id = = msg - > networking_sockets ( ) . connection_id_from ( ) ; } ) ;
if ( connect_socket = = sbcs - > connect_sockets . end ( ) ) {
SteamNetworkingIdentity identity ;
identity . SetSteamID64 ( msg - > source_id ( ) ) ;
2024-05-25 14:59:13 +02:00
HSteamNetConnection new_connection = new_connect_socket ( identity , virtual_port , real_port , CONNECT_SOCKET_NOT_ACCEPTED , conn - > socket_id , static_cast < HSteamNetConnection > ( msg - > networking_sockets ( ) . connection_id_from ( ) ) ) ;
2024-05-03 01:29:57 +03:00
launch_callback ( new_connection , CONNECT_SOCKET_NO_CONNECTION ) ;
}
}
} else if ( msg - > networking_sockets ( ) . type ( ) = = Networking_Sockets : : CONNECTION_ACCEPTED ) {
2024-05-25 14:59:13 +02:00
auto connect_socket = sbcs - > connect_sockets . find ( static_cast < HSteamNetConnection > ( msg - > networking_sockets ( ) . connection_id ( ) ) ) ;
2024-05-03 01:29:57 +03:00
if ( connect_socket ! = sbcs - > connect_sockets . end ( ) ) {
if ( connect_socket - > second . remote_identity . GetSteamID64 ( ) = = 0 ) {
connect_socket - > second . remote_identity . SetSteamID64 ( msg - > source_id ( ) ) ;
}
if ( connect_socket - > second . remote_identity . GetSteamID64 ( ) = = msg - > source_id ( ) & & connect_socket - > second . status = = CONNECT_SOCKET_CONNECTING ) {
2024-05-25 14:59:13 +02:00
connect_socket - > second . remote_id = static_cast < HSteamNetConnection > ( msg - > networking_sockets ( ) . connection_id_from ( ) ) ;
2024-05-03 01:29:57 +03:00
connect_socket - > second . status = CONNECT_SOCKET_CONNECTED ;
launch_callback ( connect_socket - > first , CONNECT_SOCKET_CONNECTING ) ;
}
}
} else if ( msg - > networking_sockets ( ) . type ( ) = = Networking_Sockets : : DATA ) {
2024-05-25 14:59:13 +02:00
auto connect_socket = sbcs - > connect_sockets . find ( static_cast < HSteamNetConnection > ( msg - > networking_sockets ( ) . connection_id ( ) ) ) ;
2024-05-03 01:29:57 +03:00
if ( connect_socket ! = sbcs - > connect_sockets . end ( ) ) {
if ( connect_socket - > second . remote_identity . GetSteamID64 ( ) = = msg - > source_id ( ) & & ( connect_socket - > second . status = = CONNECT_SOCKET_CONNECTED ) ) {
PRINT_DEBUG ( " got data len %zu, num " " % " PRIu64 " on connection %u " , msg - > networking_sockets ( ) . data ( ) . size ( ) , msg - > networking_sockets ( ) . message_number ( ) , connect_socket - > first ) ;
connect_socket - > second . data . push ( msg - > networking_sockets ( ) ) ;
}
} else {
connect_socket = std : : find_if ( sbcs - > connect_sockets . begin ( ) , sbcs - > connect_sockets . end ( ) , [ msg ] ( const auto & in ) { return in . second . remote_identity . GetSteamID64 ( ) = = msg - > source_id ( ) & & ( in . second . status = = CONNECT_SOCKET_NOT_ACCEPTED | | in . second . status = = CONNECT_SOCKET_CONNECTED ) & & in . second . remote_id = = msg - > networking_sockets ( ) . connection_id_from ( ) ; } ) ;
if ( connect_socket ! = sbcs - > connect_sockets . end ( ) ) {
PRINT_DEBUG ( " got data len %zu, num " " % " PRIu64 " on not accepted connection %u " , msg - > networking_sockets ( ) . data ( ) . size ( ) , msg - > networking_sockets ( ) . message_number ( ) , connect_socket - > first ) ;
connect_socket - > second . data . push ( msg - > networking_sockets ( ) ) ;
}
}
} else if ( msg - > networking_sockets ( ) . type ( ) = = Networking_Sockets : : CONNECTION_END ) {
2024-05-25 14:59:13 +02:00
auto connect_socket = sbcs - > connect_sockets . find ( static_cast < HSteamNetConnection > ( msg - > networking_sockets ( ) . connection_id ( ) ) ) ;
2024-05-03 01:29:57 +03:00
if ( connect_socket ! = sbcs - > connect_sockets . end ( ) ) {
if ( connect_socket - > second . remote_identity . GetSteamID64 ( ) = = msg - > source_id ( ) & & connect_socket - > second . status = = CONNECT_SOCKET_CONNECTED ) {
enum connect_socket_status old_status = connect_socket - > second . status ;
connect_socket - > second . status = CONNECT_SOCKET_CLOSED ;
launch_callback ( connect_socket - > first , old_status ) ;
}
}
}
}
}