GARbro-mirror/Legacy/Discovery/ImagePR1.cs

344 lines
12 KiB
C#
Raw Permalink Normal View History

//! \file ImagePR1.cs
//! \date 2023 Oct 04
//! \brief Discovery image format (PC-98).
//
// Copyright (C) 2023 by morkt
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//
using System;
using System.ComponentModel.Composition;
using System.IO;
using System.Windows.Media;
using System.Windows.Media.Imaging;
namespace GameRes.Formats.Discovery
{
internal class PrMetaData : ImageMetaData
{
public byte Flags;
public byte Mask;
public bool IsLeftToRight => (Flags & 1) != 0;
}
[Export(typeof(ImageFormat))]
public class Pr1Format : ImageFormat
{
public override string Tag => "PR1";
public override string Description => "Discovery image format";
public override uint Signature => 0;
public override ImageMetaData ReadMetaData (IBinaryStream file)
{
if (!file.Name.HasAnyOfExtensions (".PR1", ".AN1"))
return null;
var header = file.ReadHeader (12);
return new PrMetaData {
Width = (uint)header.ToUInt16 (8) << 3,
Height = header.ToUInt16 (0xA),
OffsetX = header.ToUInt16 (2),
OffsetY = header.ToUInt16 (4),
Flags = header[0],
Mask = header[1],
BPP = 4,
};
}
public override ImageData Read (IBinaryStream file, ImageMetaData info)
{
var reader = new PrReader (file, (PrMetaData)info);
return reader.Unpack();
}
public override void Write (Stream file, ImageData image)
{
throw new System.NotImplementedException ("Pr1Format.Write not implemented");
}
}
internal class PrReader
{
IBinaryStream m_input;
PrMetaData m_info;
Action IncrementDest;
Func<bool> IsDone;
public PrMetaData Info => m_info;
public PrReader (IBinaryStream file, PrMetaData info)
{
m_input = file;
m_info = info;
if (m_info.IsLeftToRight)
{
IncrementDest = IncLeftToRight;
IsDone = () => m_dst >= m_plane_size;
}
else
{
IncrementDest = IncTopToBottom;
IsDone = () => m_x >= m_stride;
}
}
protected BitmapPalette m_palette;
protected int m_stride;
protected int m_plane_size;
protected byte[][] m_planes;
int m_dst;
int m_x;
protected void UnpackPlanes ()
{
const int buffer_slice = 0x410;
m_input.Position = 0xC;
m_palette = ReadPalette();
m_stride = m_info.iWidth >> 3;
m_plane_size = m_stride * m_info.iHeight;
m_planes = new byte[][] {
new byte[m_plane_size], new byte[m_plane_size], new byte[m_plane_size], new byte[m_plane_size],
};
var buffer = new byte[buffer_slice * 4];
var buf_count = new byte[4];
var offsets = new int[] { 0, buffer_slice, buffer_slice*2, buffer_slice*3 };
m_dst = 0;
m_x = 0;
while (!IsDone())
{
int ctl = m_input.ReadByte();
if (-1 == ctl)
break;
int count = (ctl & 0x1F) + 1;
bool bit = (ctl & 0x20) != 0;
ctl >>= 6;
if (!bit)
{
if (ctl != 0)
{
int src_pos = ctl;
int src_count2 = 1 << (ctl - 1);
int pos = offsets[ctl];
int count2 = src_count2;
do
{
byte p0 = m_input.ReadUInt8();
byte p1 = m_input.ReadUInt8();
byte p2 = m_input.ReadUInt8();
byte p3 = m_input.ReadUInt8();
PutPixels (p0, p1, p2, p3);
buffer[pos++] = p0;
buffer[pos++] = p1;
buffer[pos++] = p2;
buffer[pos++] = p3;
}
while (--count > 0 && --count2 > 0);
while (count > 0)
{
int si = offsets[src_pos];
for (int i = 0; i < src_count2; ++i)
{
byte p0 = buffer[si++];
byte p1 = buffer[si++];
byte p2 = buffer[si++];
byte p3 = buffer[si++];
PutPixels (p0, p1, p2, p3);
if (--count <= 0)
break;
}
}
offsets[src_pos] += src_count2 * 4;
buf_count[src_pos] += (byte)src_count2;
if (buf_count[src_pos] == 0)
offsets[src_pos] = src_pos * buffer_slice;
}
else
{
while (count --> 0)
{
byte p0 = m_input.ReadUInt8();
byte p1 = m_input.ReadUInt8();
byte p2 = m_input.ReadUInt8();
byte p3 = m_input.ReadUInt8();
PutPixels (p0, p1, p2, p3);
int pos = offsets[0];
buffer[pos++] = p0;
buffer[pos++] = p1;
buffer[pos++] = p2;
buffer[pos++] = p3;
offsets[0] += 4;
buf_count[0]++;
if (0 == buf_count[0])
offsets[0] = 0;
}
}
}
else if (ctl != 0)
{
int count2 = 1 << (ctl - 1);
int off_diff = count2 << 2;
int off_mask = off_diff - 1;
int off = m_input.ReadUInt8() << 2;;
int base_pos = ctl * buffer_slice;
off += base_pos;
int src = off;
while (count > 0)
{
off = src;
for (int i = 0; i < count2; ++i)
{
byte p0 = buffer[off];
byte p1 = buffer[off+1];
byte p2 = buffer[off+2];
byte p3 = buffer[off+3];
PutPixels (p0, p1, p2, p3);
off += 4;
int pos = off - base_pos;
if ((pos & off_mask) == 0)
off -= off_diff;
if (--count <= 0)
break;
}
}
}
else
{
while (count --> 0)
{
int off = m_input.ReadUInt8() << 2;
byte p0 = buffer[off];
byte p1 = buffer[off+1];
byte p2 = buffer[off+2];
byte p3 = buffer[off+3];
PutPixels (p0, p1, p2, p3);
}
}
}
}
public ImageData Unpack ()
{
UnpackPlanes();
int output_stride = m_info.iWidth >> 1;
var output = new byte[output_stride * m_info.iHeight];
FlattenPlanes (0, output);
return ImageData.Create (m_info, PixelFormats.Indexed4, m_palette, output, output_stride);
}
void PutPixels (byte p0, byte p1, byte p2, byte p3)
{
if (0xFF == m_info.Mask || true) // we don't do overlaying here, just single image decoding
{
m_planes[0][m_dst] = p0;
m_planes[1][m_dst] = p1;
m_planes[2][m_dst] = p2;
m_planes[3][m_dst] = p3;
}
else
{
byte v = m_info.Mask;
byte mask = p0;
if ((v & 1) != 0)
mask = (byte)~mask;
if ((v & 2) != 0)
mask |= (byte)~p1;
else
mask |= p1;
if ((v & 4) != 0)
mask |= (byte)~p2;
else
mask |= p2;
if ((v & 8) != 0)
mask |= (byte)~p3;
else
mask |= p3;
p0 &= mask;
p1 &= mask;
p2 &= mask;
p3 &= mask;
mask = (byte)~mask;
m_planes[0][m_dst] &= mask;
m_planes[0][m_dst] |= p0;
m_planes[1][m_dst] &= mask;
m_planes[1][m_dst] |= p1;
m_planes[2][m_dst] &= mask;
m_planes[2][m_dst] |= p2;
m_planes[3][m_dst] &= mask;
m_planes[3][m_dst] |= p3;
}
IncrementDest();
}
void IncLeftToRight ()
{
++m_dst;
++m_x;
if (m_x > m_info.iWidth)
m_x = 0;
}
void IncTopToBottom ()
{
m_dst += m_stride;
if (m_dst >= m_plane_size)
m_dst = ++m_x;
}
internal void FlattenPlanes (int src, byte[] output)
{
int m_dst = 0;
for (; src < m_plane_size; ++src)
{
int b0 = m_planes[0][src];
int b1 = m_planes[1][src];
int b2 = m_planes[2][src];
int b3 = m_planes[3][src];
for (int j = 0; j < 8; j += 2)
{
byte px = (byte)((((b0 << j) & 0x80) >> 3)
| (((b1 << j) & 0x80) >> 2)
| (((b2 << j) & 0x80) >> 1)
| (((b3 << j) & 0x80) ));
px |= (byte)((((b0 << j) & 0x40) >> 6)
| (((b1 << j) & 0x40) >> 5)
| (((b2 << j) & 0x40) >> 4)
| (((b3 << j) & 0x40) >> 3));
output[m_dst++] = px;
}
}
}
BitmapPalette ReadPalette ()
{
const int count = 16;
var colors = new Color[count];
for (int i = 0; i < count; ++i)
{
byte g = m_input.ReadUInt8();
byte r = m_input.ReadUInt8();
byte b = m_input.ReadUInt8();
colors[i] = Color.FromRgb ((byte)(r * 0x11), (byte)(g * 0x11), (byte)(b * 0x11));
}
return new BitmapPalette (colors);
}
}
}