//! \file ArcEncrypted.cs //! \date Thu Jan 14 03:27:52 2016 //! \brief Encrypted AZ system resource archives. // // Copyright (C) 2016 by morkt // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to // deal in the Software without restriction, including without limitation the // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or // sell copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS // IN THE SOFTWARE. // using GameRes.Compression; using GameRes.Utility; using System; using System.Collections.Generic; using System.ComponentModel.Composition; using System.IO; using System.Linq; using System.Security.Cryptography; namespace GameRes.Formats.AZSys { [Serializable] public class EncryptionScheme { public readonly uint IndexKey; public readonly uint? ContentKey; public static readonly uint[] DefaultSeed = { 0x2F4D7DFE, 0x47345292, 0x1BA5FE82, 0x7BC04525 }; public EncryptionScheme (uint ikey, uint ckey) { IndexKey = ikey; ContentKey = ckey; } public EncryptionScheme (uint[] iseed) { IndexKey = GenerateKey (iseed); ContentKey = null; } public EncryptionScheme (uint[] iseed, byte[] cseed) { IndexKey = GenerateKey (iseed); ContentKey = GenerateContentKey (cseed); } public static uint GenerateKey (uint[] seed) { if (null == seed) throw new ArgumentNullException ("seed"); if (seed.Length < 4) throw new ArgumentException(); byte[] seed_bytes = new byte[0x10]; Buffer.BlockCopy (seed, 0, seed_bytes, 0, 0x10); uint key = Crc32.UpdateCrc (~seed[0], seed_bytes, 0, seed_bytes.Length) ^ Crc32.UpdateCrc (~(seed[1] & 0xFFFF), seed_bytes, 0, seed_bytes.Length) ^ Crc32.UpdateCrc (~(seed[1] >> 16), seed_bytes, 0, seed_bytes.Length) ^ Crc32.UpdateCrc (~seed[2], seed_bytes, 0, seed_bytes.Length) ^ Crc32.UpdateCrc (~seed[3], seed_bytes, 0, seed_bytes.Length); return seed[0] ^ ~key; } public static uint GenerateContentKey (byte[] env_bytes) { if (null == env_bytes) throw new ArgumentNullException ("env_bytes"); if (env_bytes.Length < 0x10) throw new ArgumentException(); uint crc = Crc32.Compute (env_bytes, 0, 0x10); var sfmt = new FastMersenneTwister (crc); var seed = new uint[4]; seed[0] = sfmt.GetRand32(); seed[1] = sfmt.GetRand32() & 0xFFFF; seed[1] |= sfmt.GetRand32() << 16; seed[2] = sfmt.GetRand32(); seed[3] = sfmt.GetRand32(); return GenerateKey (seed); } } [Serializable] public class AzScheme : ResourceScheme { public Dictionary KnownSchemes; } internal class AzArchive : ArcFile { public readonly uint SysenvKey; public readonly uint RegularKey; public AzArchive (ArcView arc, ArchiveFormat impl, ICollection dir, uint syskey, uint regkey) : base (arc, impl, dir) { SysenvKey = syskey; RegularKey = regkey; } } public abstract class ArcEncryptedBase : ArchiveFormat { internal List ParseIndex (Stream input, int count, long base_offset, long max_offset) { using (var zstream = new ZLibStream (input, CompressionMode.Decompress)) using (var index = new BinaryReader (zstream)) { var dir = new List (count); var name_buffer = new byte[0x20]; for (int i = 0; i < count; ++i) { uint offset = index.ReadUInt32(); uint size = index.ReadUInt32(); uint crc = index.ReadUInt32(); index.ReadInt32(); if (name_buffer.Length != index.Read (name_buffer, 0, name_buffer.Length)) return null; var name = Binary.GetCString (name_buffer, 0, 0x20); if (0 == name.Length) return null; var entry = FormatCatalog.Instance.Create (name); entry.Offset = base_offset + offset; entry.Size = size; if (!entry.CheckPlacement (max_offset)) return null; dir.Add (entry); } return dir; } } internal bool DecryptAsb (byte[] data) { int packed_size = LittleEndian.ToInt32 (data, 4); if (packed_size <= 4 || packed_size > data.Length-0x10) return false; uint unpacked_size = LittleEndian.ToUInt32 (data, 8); uint key = unpacked_size ^ 0x9E370001; unsafe { fixed (byte* raw = &data[0x10]) { uint* data32 = (uint*)raw; for (int i = packed_size/4; i > 0; --i) *data32++ -= key; } } return true; } } [Export(typeof(ArchiveFormat))] public class ArcEncryptedOpener : ArcEncryptedBase { public override string Tag { get { return "ARC/AZ/encrypted"; } } public override string Description { get { return "AZ system encrypted resource archive"; } } public override uint Signature { get { return 0; } } public override bool IsHierarchic { get { return false; } } public override bool CanCreate { get { return false; } } public static Dictionary KnownSchemes = new Dictionary { { "Default", new EncryptionScheme (EncryptionScheme.DefaultSeed) }, }; public override ResourceScheme Scheme { get { return new AzScheme { KnownSchemes = KnownSchemes }; } set { KnownSchemes = ((AzScheme)value).KnownSchemes; } } public ArcEncryptedOpener () { Extensions = new string[] { "arc" }; Signatures = new uint[] { 0x53EA06EB, 0x74F98F2F }; } EncryptionScheme CurrentScheme; public override ArcFile TryOpen (ArcView file) { byte[] header_encrypted = file.View.ReadBytes (0, 0x30); if (header_encrypted.Length < 0x30) return null; byte[] header = new byte[header_encrypted.Length]; if (CurrentScheme != null) { try { Buffer.BlockCopy (header_encrypted, 0, header, 0, header.Length); Decrypt (header, 0, CurrentScheme.IndexKey); if (Binary.AsciiEqual (header, 0, "ARC\0")) { var arc = ReadIndex (file, header, CurrentScheme); if (null != arc) return arc; } } catch { /* ignore parse errors */ } } foreach (var scheme in KnownSchemes.Values) { Buffer.BlockCopy (header_encrypted, 0, header, 0, header.Length); Decrypt (header, 0, scheme.IndexKey); if (Binary.AsciiEqual (header, 0, "ARC\0")) { var arc = ReadIndex (file, header, scheme); if (null != arc) CurrentScheme = new EncryptionScheme (arc.SysenvKey, arc.RegularKey); return arc; } } return null; } public override Stream OpenEntry (ArcFile arc, Entry entry) { var azarc = arc as AzArchive; if (null == azarc) return base.OpenEntry (arc, entry); var data = arc.File.View.ReadBytes (entry.Offset, entry.Size); if (entry.Name.Equals ("sysenv.tbl", StringComparison.InvariantCultureIgnoreCase)) { Decrypt (data, entry.Offset, azarc.SysenvKey); return UnpackData (data); } Decrypt (data, entry.Offset, azarc.RegularKey); if (data.Length > 0x14 && Binary.AsciiEqual (data, 0, "ASB\0") && DecryptAsb (data)) { var asb = UnpackData (data, 0x10); var header = new byte[0x10]; Buffer.BlockCopy (data, 0, header, 0, 0x10); return new PrefixStream (header, asb); } return new MemoryStream (data); } uint ReadSysenvSeed (ArcView file, IEnumerable dir, uint key) { var entry = dir.FirstOrDefault (e => e.Name.Equals ("sysenv.tbl", StringComparison.InvariantCultureIgnoreCase)); if (null == entry) return key; var data = file.View.ReadBytes (entry.Offset, entry.Size); if (data.Length <= 4) throw new InvalidFormatException ("Invalid sysenv.tbl size"); Decrypt (data, entry.Offset, key); uint adler32 = LittleEndian.ToUInt32 (data, 0); if (adler32 != Adler32.Compute (data, 4, data.Length-4)) throw new InvalidEncryptionScheme(); using (var input = new MemoryStream (data, 4, data.Length-4)) using (var sysenv_stream = new ZLibStream (input, CompressionMode.Decompress)) { var seed = new byte[0x10]; if (0x10 != sysenv_stream.Read (seed, 0, 0x10)) throw new InvalidFormatException ("Invalid sysenv.tbl size"); return EncryptionScheme.GenerateContentKey (seed); } } Stream UnpackData (byte[] data, int index = 0) { int length = data.Length - index; if (length <= 4) return new MemoryStream (data, index, length); uint adler32 = LittleEndian.ToUInt32 (data, index); if (adler32 != Adler32.Compute (data, index+4, length-4)) return new MemoryStream (data, index, length); var input = new MemoryStream (data, index+4, length-4); return new ZLibStream (input, CompressionMode.Decompress); } AzArchive ReadIndex (ArcView file, byte[] header, EncryptionScheme scheme) { int ext_count = LittleEndian.ToInt32 (header, 4); int count = LittleEndian.ToInt32 (header, 8); uint index_length = LittleEndian.ToUInt32 (header, 12); if (ext_count < 1 || ext_count > 8 || !IsSaneCount (count) || index_length >= file.MaxOffset) return null; var packed_index = file.View.ReadBytes (header.Length, index_length); if (packed_index.Length != index_length) return null; Decrypt (packed_index, header.Length, scheme.IndexKey); uint checksum = LittleEndian.ToUInt32 (packed_index, 0); if (checksum != Adler32.Compute (packed_index, 4, packed_index.Length-4)) { if (checksum != Crc32.Compute (packed_index, 4, packed_index.Length-4)) throw new InvalidFormatException ("Index checksum mismatch"); } using (var input = new MemoryStream (packed_index, 4, packed_index.Length-4)) { var dir = ParseIndex (input, count, header.Length + index_length, file.MaxOffset); if (null == dir) return null; uint content_key = GetContentKey (file, dir, scheme); return new AzArchive (file, this, dir, scheme.IndexKey, content_key); } } static void Decrypt (byte[] data, long offset, uint key) { ulong hash = key * 0x9E370001ul; if (0 != (offset & 0x3F)) { hash = Binary.RotL (hash, (int)offset); } for (uint i = 0; i < data.Length; ++i) { data[i] ^= (byte)hash; hash = Binary.RotL (hash, 1); } } uint GetContentKey (ArcView file, List dir, EncryptionScheme scheme) { if (null != scheme.ContentKey) return scheme.ContentKey.Value; if ("system.arc".Equals (Path.GetFileName (file.Name), StringComparison.InvariantCultureIgnoreCase)) { return ReadSysenvSeed (file, dir, scheme.IndexKey); } else { var system_arc = VFS.CombinePath (VFS.GetDirectoryName (file.Name), "system.arc"); using (var arc = VFS.OpenView (system_arc)) { var header = arc.View.ReadBytes (0, 0x30); Decrypt (header, 0, scheme.IndexKey); using (var arc_file = ReadIndex (arc, header, scheme)) { return ReadSysenvSeed (arc, arc_file.Dir, scheme.IndexKey); } } } } } [Export(typeof(ArchiveFormat))] public class ArcIsaacEncryptedOpener : ArcEncryptedBase { public override string Tag { get { return "ARC/AZ/ISAAC"; } } public override string Description { get { return "AZ system encrypted resource archive"; } } public override uint Signature { get { return 0; } } public override bool IsHierarchic { get { return false; } } public override bool CanCreate { get { return false; } } public ArcIsaacEncryptedOpener () { Extensions = new string[] { "arc" }; } public override ArcFile TryOpen (ArcView file) { byte[] header_encrypted = file.View.ReadBytes (0, 0x30); if (header_encrypted.Length < 0x30) return null; byte[] header = new byte[header_encrypted.Length]; Buffer.BlockCopy (header_encrypted, 0, header, 0, header.Length); var cipher = new AzIsaacEncryption ((uint)file.MaxOffset); cipher.Decrypt (header, 0, header.Length, 0); if (!Binary.AsciiEqual (header, 0, "ARC\0")) return null; int ext_count = LittleEndian.ToInt32 (header, 4); int count = LittleEndian.ToInt32 (header, 8); uint index_length = LittleEndian.ToUInt32 (header, 12); if (ext_count < 1 || ext_count > 8 || !IsSaneCount (count) || index_length >= file.MaxOffset) return null; var packed_index = file.View.ReadBytes (0x30, index_length); if (packed_index.Length != index_length) return null; cipher.Decrypt (packed_index, 0, packed_index.Length, 0x30); using (var input = new MemoryStream (packed_index)) { var dir = ParseIndex (input, count, header.Length + index_length, file.MaxOffset); if (null == dir) return null; return new ArcFile (file, this, dir); } } public override Stream OpenEntry (ArcFile arc, Entry entry) { var data = arc.File.View.ReadBytes (entry.Offset, entry.Size); var cipher = new AzIsaacEncryption (entry.Size); cipher.Decrypt (data, 0, data.Length, 0); if (data.Length > 0x14 && Binary.AsciiEqual (data, 0, "ASB\0") && DecryptAsb (data)) { var header = new byte[0x10]; Buffer.BlockCopy (data, 0, header, 0, 0x10); Stream input = new MemoryStream (data, 0x10, data.Length-0x10); input = new ZLibStream (input, CompressionMode.Decompress); return new PrefixStream (header, input); } return new MemoryStream (data); } /// /// Calculate SHA1 sum of archive file. /// public byte[] CalculateSum (Stream arc) { using (var sha1 = SHA1.Create()) return sha1.ComputeHash (arc); } } internal class AzIsaacEncryption { uint[] m_key = new uint[0x100]; public AzIsaacEncryption (uint seed) { var isaac = new Isaac64Cipher (seed); for (int i = 0; i < m_key.Length; ++i) { m_key[i] = isaac.GetRand32(); } } public void Decrypt (byte[] data, int index, int length, ushort offset) { for (int i = 0; i < length; ++i) { data[index + i] ^= (byte)Binary.RotL (m_key[offset & 0xFF] ^ 0x1000193, offset >> 8); ++offset; } } } /// /// ISAAC 64-bit pseudorandom number generator. /// internal class Isaac64Cipher { int m_count; ulong[] m_entropy = new ulong[0x100]; ulong[] m_state = new ulong[0x100]; public Isaac64Cipher (uint seed) { unsafe { fixed (ulong* e = m_entropy) { uint* e32 = (uint*)e; *e32 = seed ^ 0x9E370001u; for (uint i = 1; i < 0x200u; ++i) { e32[i] = i - 0x61C88647u * (e32[i-1] ^ (e32[i-1] >> 30)); } } } Init(); } ulong aa, bb, cc; ulong a, b, c, d, e, f, g, h; void Mix () { a -= e; f ^= h >> 9; h += a; b -= f; g ^= a << 9; a += b; c -= g; h ^= b >> 23; b += c; d -= h; a ^= c << 15; c += d; e -= a; b ^= d >> 14; d += e; f -= b; c ^= e << 20; e += f; g -= c; d ^= f >> 17; f += g; h -= d; e ^= g << 14; g += h; } void Init () { aa = bb = cc = 0; a = b = c = d = e = f = g = h = 0x9E3779B97F4A7C13ul; int i; for (i = 0; i < 4; ++i) { Mix(); } for (i = 0; i < 0x100; i += 8) { a += m_entropy[i ]; b += m_entropy[i+1]; c += m_entropy[i+2]; d += m_entropy[i+3]; e += m_entropy[i+4]; f += m_entropy[i+5]; g += m_entropy[i+6]; h += m_entropy[i+7]; Mix(); m_state[i ] = a; m_state[i+1] = b; m_state[i+2] = c; m_state[i+3] = d; m_state[i+4] = e; m_state[i+5] = f; m_state[i+6] = g; m_state[i+7] = h; } for (i = 0; i < 0x100; i += 8) { a += m_state[i ]; b += m_state[i+1]; c += m_state[i+2]; d += m_state[i+3]; e += m_state[i+4]; f += m_state[i+5]; g += m_state[i+6]; h += m_state[i+7]; Mix(); m_state[i ] = a; m_state[i+1] = b; m_state[i+2] = c; m_state[i+3] = d; m_state[i+4] = e; m_state[i+5] = f; m_state[i+6] = g; m_state[i+7] = h; } Shuffle(); m_count = 0x100; } void RngStep (ulong mix, ref int m, ref int m2, ref int r) { ulong x = m_state[m]; aa = mix + m_state[m2++]; ulong y = m_state[(x >> 3) & 0xFF] + aa + bb; m_state[m++] = y; m_entropy[r++] = bb = m_state[(y >> 11) & 0xFF] + x; } void Shuffle () { int m1 = 0; int r = 0; bb += ++cc; int mend, m2; mend = m2 = 0x80; while (m1 < mend) { RngStep(~(aa ^ (aa << 21)), ref m1, ref m2, ref r); RngStep( aa ^ (aa >> 5) , ref m1, ref m2, ref r); RngStep( aa ^ (aa << 12) , ref m1, ref m2, ref r); RngStep( aa ^ (aa >> 33) , ref m1, ref m2, ref r); } m2 = 0; while (m2 < mend) { RngStep(~(aa ^ (aa << 21)), ref m1, ref m2, ref r); RngStep( aa ^ (aa >> 5) , ref m1, ref m2, ref r); RngStep( aa ^ (aa << 12) , ref m1, ref m2, ref r); RngStep( aa ^ (aa >> 33) , ref m1, ref m2, ref r); } } public uint GetRand32 () { if (0 == m_count--) { Shuffle(); m_count = 0xFF; } ulong num = m_entropy[m_count]; return (uint)num ^ (uint)(num >> 32); } } }