635 lines
24 KiB
C#

//! \file ImagePT1.cs
//! \date Wed Apr 15 15:17:24 2015
//! \brief FFA System image format implementation.
//
// Copyright (C) 2015 by morkt
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//
using System;
using System.Collections.Generic;
using System.ComponentModel.Composition;
using System.IO;
using System.Text;
using System.Windows;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using GameRes.Utility;
namespace GameRes.Formats.Ffa
{
internal class Pt1MetaData : ImageMetaData
{
public int Type;
public uint PackedSize;
public uint UnpackedSize;
}
[Export(typeof(ImageFormat))]
public class Pt1Format : ImageFormat
{
public override string Tag { get { return "PT1"; } }
public override string Description { get { return "FFA System RGB image format"; } }
public override uint Signature { get { return 2u; } }
public Pt1Format ()
{
Signatures = new uint[] { 2, 1, 0 };
}
public override void Write (Stream file, ImageData image)
{
throw new NotImplementedException ("Pt1Format.Write not implemented");
}
public override ImageMetaData ReadMetaData (Stream stream)
{
using (var input = new ArcView.Reader (stream))
{
int type = input.ReadInt32();
if (type < 0 || type > 2)
return null;
if (-1 != input.ReadInt32())
return null;
int x = input.ReadInt32();
int y = input.ReadInt32();
uint width = input.ReadUInt32();
uint height = input.ReadUInt32();
uint comp_size = input.ReadUInt32();
uint uncomp_size = input.ReadUInt32();
if (uncomp_size != width*height*3u)
return null;
return new Pt1MetaData {
Width = width,
Height = height,
OffsetX = x,
OffsetY = y,
BPP = 24,
Type = type,
PackedSize = comp_size,
UnpackedSize = uncomp_size
};
}
}
public override ImageData Read (Stream stream, ImageMetaData info)
{
var meta = info as Pt1MetaData;
if (null == meta)
throw new ArgumentException ("Pt1Format.Read should be supplied with Pt1MetaData", "info");
stream.Position = 0x20;
var reader = new Reader (stream, meta);
reader.Unpack();
return ImageData.Create (meta, PixelFormats.Bgr24, null, reader.Data);
}
internal class Reader
{
byte[] m_input;
byte[] m_output;
int m_type;
int m_width;
int m_height;
int m_stride;
int m_left = 0;
public byte[] Data { get { return m_output; } }
public Reader (Stream input, Pt1MetaData info)
{
m_type = info.Type;
m_input = new byte[info.PackedSize+8];
if ((int)info.PackedSize != input.Read (m_input, 0, (int)info.PackedSize))
throw new InvalidFormatException ("Unexpected end of file");
m_width = (int)info.Width;
m_height = (int)info.Height;
m_output = new byte[info.UnpackedSize];
m_stride = m_width*3;
}
public byte[] Unpack ()
{
switch (m_type)
{
case 2: UnpackV2(); break;
case 1: UnpackV1(); break;
case 0: UnpackV0(); break;
}
return m_output;
}
uint edx;
byte ch;
int src;
void ReadNext ()
{
byte cl = (byte)(32 - ch);
edx &= 0xFFFFFFFFu >> cl;
edx += LittleEndian.ToUInt32 (m_input, src) << ch;
src += cl >> 3;
ch += (byte)(cl & 0xf8);
}
void UnpackV2 ()
{
src = 0;
int dst = 0;
Buffer.BlockCopy (m_input, src, m_output, dst, 3);
src += 3;
dst += 3;
edx = LittleEndian.ToUInt32 (m_input, src);
src += 3;
ch = 0x18;
uint _CF;
uint ebx;
sbyte ah;
byte al;
// [ebp+var_8] = i
for (int i = 1; i < m_width; ++i)
{
ReadNext();
_CF = edx & 1;
edx >>= 1;
if (0 != _CF)
{
--ch;
Buffer.BlockCopy (m_output, dst-3, m_output, dst, 3);
dst += 3;
}
else
{
ch -= 2;
_CF = edx & 1;
edx >>= 1;
if (0 != _CF)
{
ah = sub_4225EA();
al = (byte)(ah + m_output[dst-3]);
m_output[dst++] = al;
ReadNext();
ah = sub_4225EA();
al = (byte)(ah + m_output[dst-3]);
m_output[dst++] = al;
ReadNext();
ah = sub_4225EA();
al = (byte)(ah + m_output[dst-3]);
m_output[dst++] = al;
}
else
{
ReadNext();
LittleEndian.Pack ((ushort)edx, m_output, dst);
edx >>= 16;
m_output[dst+2] = (byte)edx;
dst += 3;
edx >>= 8;
ch -= 24;
}
}
}
for (int i = 1; i < m_height; ++i)
{
dst += m_left; // XXX add edi, [ebp+arg_8]
ReadNext();
_CF = edx & 1;
edx >>= 1;
if (0 != _CF)
{
--ch;
Buffer.BlockCopy (m_output, dst-m_stride, m_output, dst, 3);
dst += 3;
}
else // loc_42207F
{
ch -= 2;
_CF = edx & 1;
edx >>= 1;
if (0 != _CF)
{
ah = sub_4225EA();
al = (byte)(ah + m_output[dst-m_stride]);
m_output[dst++] = al;
ReadNext();
ah = sub_4225EA();
al = (byte)(ah + m_output[dst-m_stride]);
m_output[dst++] = al;
ReadNext();
ah = sub_4225EA();
al = (byte)(ah + m_output[dst-m_stride]);
m_output[dst++] = al;
}
else // loc_4220FC
{
ReadNext();
LittleEndian.Pack ((ushort)edx, m_output, dst);
edx >>= 16;
m_output[dst+2] = (byte)edx;
dst += 3;
edx >>= 8;
ch -= 24;
}
}
for (int j = 1; j < m_width; ++j)
{
ReadNext();
_CF = edx & 1;
edx >>= 1;
if (0 != _CF)
{
--ch;
ebx = (uint)(dst - m_stride);
ah = sub_4225EA();
al = (byte)(m_output[dst-3] - m_output[ebx-3] + m_output[ebx] + ah);
m_output[dst++] = al;
ReadNext();
ah = sub_4225EA();
al = (byte)(m_output[dst-3] - m_output[ebx-2] + m_output[ebx+1] + ah);
m_output[dst++] = al;
ReadNext();
ah = sub_4225EA();
al = (byte)(m_output[dst-3] - m_output[ebx-1] + m_output[ebx+2] + ah);
m_output[dst++] = al;
}
else
{
_CF = edx & 1;
edx >>= 1;
if (0 != _CF)
{
ch -= 2;
ebx = (uint)(dst - m_stride);
al = (byte)(m_output[dst-3] - m_output[ebx-3] + m_output[ebx]);
m_output[dst++] = al;
al = (byte)(m_output[dst-3] - m_output[ebx-2] + m_output[ebx+1]);
m_output[dst++] = al;
al = (byte)(m_output[dst-3] - m_output[ebx-1] + m_output[ebx+2]);
m_output[dst++] = al;
}
else
{
ebx = edx & 3;
if (3 == ebx)
{
edx >>= 2;
ch -= 4;
Buffer.BlockCopy (m_output, dst-3, m_output, dst, 3);
dst += 3;
}
else if (2 == ebx)
{
edx >>= 2;
ch -= 4;
ReadNext();
LittleEndian.Pack ((ushort)edx, m_output, dst);
edx >>= 16;
m_output[dst+2] = (byte)edx;
dst += 3;
edx >>= 8;
ch -= 24;
}
else if (1 == ebx)
{
edx >>= 2;
ch -= 4;
ah = sub_4225EA();
al = (byte)(ah + m_output[dst-3]);
m_output[dst++] = al;
ReadNext();
ah = sub_4225EA();
al = (byte)(ah + m_output[dst-3]);
m_output[dst++] = al;
ReadNext();
ah = sub_4225EA();
al = (byte)(ah + m_output[dst-3]);
m_output[dst++] = al;
}
else
{
ebx = edx & 0xf;
edx >>= 4;
ch -= 6;
if (0 == ebx)
{
Buffer.BlockCopy (m_output, dst - m_stride - 3, m_output, dst, 3);
dst += 3;
}
else if (8 == ebx)
{
Buffer.BlockCopy (m_output, dst - m_stride, m_output, dst, 3);
dst += 3;
}
else if (4 == ebx)
{
ah = sub_4225EA();
al = (byte)(ah + m_output[dst - m_stride - 3]);
m_output[dst++] = al;
ReadNext();
ah = sub_4225EA();
al = (byte)(ah + m_output[dst - m_stride - 3]);
m_output[dst++] = al;
ReadNext();
ah = sub_4225EA();
al = (byte)(ah + m_output[dst - m_stride - 3]);
m_output[dst++] = al;
}
else
{
ah = sub_4225EA();
al = (byte)(ah + m_output[dst - m_stride]);
m_output[dst++] = al;
ReadNext();
ah = sub_4225EA();
al = (byte)(ah + m_output[dst - m_stride]);
m_output[dst++] = al;
ReadNext();
ah = sub_4225EA();
al = (byte)(ah + m_output[dst - m_stride]);
m_output[dst++] = al;
}
}
}
}
}
}
}
sbyte sub_4225EA ()
{
uint _CF = edx & 1;
edx >>= 1;
if (0 != _CF)
{
--ch;
return 0;
}
uint bits = edx & 3;
if (2 == bits)
{
edx >>= 2;
ch -= 3;
return -1;
}
if (1 == bits)
{
edx >>= 2;
ch -= 3;
return 1;
}
switch (edx & 7)
{
case 7:
edx >>= 3;
ch -= 4;
return -2;
case 3:
edx >>= 3;
ch -= 4;
return 2;
case 4:
edx >>= 3;
ch -= 4;
return -3;
default:
switch (edx & 0x3f)
{
case 0x38:
edx >>= 6;
ch -= 7;
return 3;
case 0x18:
edx >>= 6;
ch -= 7;
return -4;
case 0x28:
edx >>= 6;
ch -= 7;
return 4;
case 0x08:
edx >>= 6;
ch -= 7;
return -5;
case 0x30:
edx >>= 6;
ch -= 7;
return 5;
case 0x10:
edx >>= 6;
ch -= 7;
return -6;
case 0x20:
edx >>= 6;
ch -= 7;
return 6;
default:
switch (edx & 0xff)
{
case 0xc0:
edx >>= 8;
ch -= 9;
return -7;
case 0x40:
edx >>= 8;
ch -= 9;
return 7;
case 0x80:
edx >>= 8;
ch -= 9;
return -8;
default:
switch (edx & 0x3ff)
{
case 0x300:
edx >>= 10;
ch -= 11;
return 8;
case 0x100:
edx >>= 10;
ch -= 11;
return -9;
case 0x200:
edx >>= 10;
ch -= 11;
return 9;
default:
switch (edx & 0xfff)
{
case 0xc00:
edx >>= 12;
ch -= 13;
return -10;
case 0x400:
edx >>= 12;
ch -= 13;
return 10;
case 0x800:
edx >>= 12;
ch -= 13;
return -11;
default:
switch (edx & 0x3fff)
{
case 0x3000:
edx >>= 14;
ch -= 15;
return 0x0b;
case 0x1000:
edx >>= 14;
ch -= 15;
return -12;
case 0x2000:
edx >>= 14;
ch -= 15;
return 0x0c;
default:
edx >>= 14;
ch -= 15;
return -13;
}
}
}
}
}
}
}
void UnpackV1 ()
{
int src = 0; // dword_462E74
int dst = 0; // dword_462E78
byte[] frame = new byte[0x1000]; // word_461A28
PopulateLzssFrame (frame);
int ebp = 0xfee;
while (src < m_input.Length)
{
byte ah = m_input[src++];
for (int mask = 1; mask != 0x100; mask <<= 1)
{
if (0 != (ah & mask))
{
byte al = m_input[src++];
frame[ebp++] = al;
ebp &= 0xfff;
m_output[dst++] = al;
m_output[dst++] = al;
m_output[dst++] = al;
}
else
{
int offset = m_input[src++];
int count = m_input[src++];
offset |= (count & 0xf0) << 4;
count = (count & 0x0f) + 3;
for (; count != 0; --count)
{
byte al = frame[offset++];
frame[ebp++] = al;
offset &= 0xfff;
ebp &= 0xfff;
m_output[dst++] = al;
m_output[dst++] = al;
m_output[dst++] = al;
}
}
if (dst >= m_output.Length)
return;
}
}
}
void UnpackV0 ()
{
int src = 0;
int dst = 0;
byte[] frame = new byte[0x1000]; // word_461A28
PopulateLzssFrame (frame);
int ebp = 0xfee;
for (;;)
{
byte ah = m_input[src++];
for (int mask = 1; mask != 0x100; mask <<= 1)
{
if (0 != (ah & mask))
{
byte al = m_input[src++];
frame[ebp++] = al;
ebp &= 0xfff;
m_output[dst++] = al;
}
else
{
int offset = m_input[src++];
int count = m_input[src++];
offset |= (count & 0xf0) << 4;
count = (count & 0x0f) + 3;
for (int i = 0; i < count; ++i)
{
byte al = frame[offset++];
frame[ebp++] = al;
offset &= 0xfff;
ebp &= 0xfff;
m_output[dst++] = al;
}
}
if (dst >= m_output.Length)
return;
}
}
}
void PopulateLzssFrame (byte[] frame)
{
int fill = 0;
int ecx;
for (int al = 0; al < 0x100; ++al)
for (ecx = 0x0d; ecx > 0; --ecx)
frame[fill++] = (byte)al;
for (int al = 0; al < 0x100; ++al)
frame[fill++] = (byte)al;
for (int al = 0xff; al >= 0; --al)
frame[fill++] = (byte)al;
for (ecx = 0x80; ecx > 0; --ecx)
frame[fill++] = 0;
for (ecx = 0x6e; ecx > 0; --ecx)
frame[fill++] = 0x20;
for (ecx = 0x12; ecx > 0; --ecx)
frame[fill++] = 0;
}
}
}
}