GARbro-mirror/Legacy/Mink/ImageFD.cs
2019-03-30 18:45:18 +04:00

362 lines
12 KiB
C#

//! \file ImageFD.cs
//! \date 2019 Mar 27
//! \brief Mink compressed bitmap format.
//
// Copyright (C) 2019 by morkt
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//
using System;
using System.ComponentModel.Composition;
using System.IO;
using System.Windows.Media;
namespace GameRes.Formats.Mink
{
[Export(typeof(ImageFormat))]
public class FdFormat : ImageFormat
{
public override string Tag { get { return "BMP/FD"; } }
public override string Description { get { return "Mink compressed bitmap format"; } }
public override uint Signature { get { return 0; } }
public FdFormat ()
{
Signatures = new uint[] { 0x00186446, 0x00184446, 0x00206446, 0 };
}
public override ImageMetaData ReadMetaData (IBinaryStream file)
{
var header = file.ReadHeader (0x10);
if (header[0] != 'F' || (header[1] & 0x5F) != 'D' || header[3] > 1)
return null;
int bpp = header[2];
if (bpp != 24 && bpp != 32)
return null;
return new FcMetaData {
Width = header.ToUInt16 (4),
Height = header.ToUInt16 (6),
BPP = bpp,
Flag = header[3],
};
}
public override ImageData Read (IBinaryStream file, ImageMetaData info)
{
var reader = new FdReader (file, (FcMetaData)info);
return reader.Unpack();
}
public override void Write (Stream file, ImageData image)
{
throw new System.NotImplementedException ("FdFormat.Write not implemented");
}
}
internal class FdReader
{
IBinaryStream m_input;
FcMetaData m_info;
public FdReader (IBinaryStream input, FcMetaData info)
{
m_input = input;
m_info = info;
}
public ImageData Unpack ()
{
m_input.Position = 16;
var output = new uint[m_info.iWidth * m_info.iHeight];
UnpackRgb (output);
if (32 == m_info.BPP)
UnpackAlpha (output);
PixelFormat format = 32 == m_info.BPP ? PixelFormats.Bgra32 : PixelFormats.Bgr32;
return ImageData.CreateFlipped (m_info, format, null, output, m_info.iWidth * 4);
}
byte m_cur_bits;
void UnpackRgb (uint[] output)
{
InitOffsetTable();
int dst = 0;
m_cur_bits = 0x80;
while (dst < output.Length)
{
int ctl = ReadNext();
int code = ControlTable[ctl - 2];
if (code < 20)
{
if (code < 2)
{
uint pixel = (uint)m_input.ReadUInt8() << 24;
pixel += (uint)m_input.ReadUInt8() << 16;
pixel += (uint)m_input.ReadUInt8() << 8;
pixel ^= 0x80000080;
pixel >>= FlowMap5[m_cur_bits];
output[dst++] = (pixel >> 8) ^ ((uint)m_cur_bits << 16);
m_cur_bits = (byte)pixel;
}
else
{
int pixel = (int)output[dst + m_offset_table[code - 2]];
int r = ReadNext();
pixel += (((r - 2) << 15) ^ -((r & 1) << 15));
int g = ReadNext();
pixel += (((g - 2) << 7) ^ -((g & 1) << 7));
int b = ReadNext();
output[dst++] = (uint)((((b - 2) ^ -(b & 1)) >> 1) + pixel);
}
}
else // code >= 20
{
int y = ReadNext();
int x = ReadNext();
int src = dst + (((y & 1) - 1) ^ (x - 2)) - m_info.iWidth * ((y >> 1) + (y & 1) - 1);
int count = ReadNext() - 1;
if (code == 38)
{
while (count --> 0)
{
output[dst++] = output[src++];
}
}
else
{
int offset = m_offset_table[code - 20]; // dword_5D51F8[code];
while (count --> 0)
{
uint pixel = output[src] + output[dst + offset] - output[src + offset];
output[dst++] = pixel;
++src;
}
}
}
}
}
void UnpackAlpha (uint[] output)
{
int dst = 0;
while (dst < output.Length)
{
int shift = 8 - FlowMap5[m_cur_bits];
uint ctl, alpha;
if (shift <= 0)
{
alpha = m_cur_bits;
ctl = 0;
}
else
{
ctl = (uint)m_cur_bits >> shift;
if (shift > 8)
{
int v94 = ((shift - 9) >> 3) + 1;
do
{
ctl <<= 8;
ctl += m_input.ReadUInt8();
shift -= 8;
--v94;
}
while (v94 > 0);
}
m_cur_bits = m_input.ReadUInt8();
alpha = (ctl << shift) + ((uint)m_cur_bits >> (8 - shift));
ctl &= ~0xFFu;
ctl |= ((uint)(m_cur_bits << shift) + (1u << (shift - 1))) & 0xFFu;
}
m_cur_bits = (byte)ctl;
ctl &= 0xFFu;
int v96 = FlowMap3[m_cur_bits];
m_cur_bits = FlowMap1[m_cur_bits];
if (0 == m_cur_bits)
{
do
{
m_cur_bits = m_input.ReadUInt8();
v96 += FlowMap4[m_cur_bits];
}
while (0 == FlowMap2[m_cur_bits]);
m_cur_bits = FlowMap2[m_cur_bits];
}
int v98 = FlowMap5[m_cur_bits];
int count, bits;
if (v96 <= v98)
{
count = (m_cur_bits + 256) >> (8 - v96);
bits = m_cur_bits << v96;
}
else // v96 > v98
{
int v99 = v96 - v98;
int v100 = (m_cur_bits + 256) >> (8 - v98);
if (v99 > 8)
{
int v101 = (int)(((uint)(v99 - 9) >> 3) + 1);
v99 -= v101 << 3;
do
{
v100 = m_input.ReadUInt8() + (v100 << 8);
--v101;
}
while (v101 > 0);
}
m_cur_bits = m_input.ReadUInt8();
count = (int)((v100 << v99) + ((uint)m_cur_bits >> (8 - v99)));
bits = (m_cur_bits << v99) + (1 << (v99 - 1));
}
m_cur_bits = (byte)bits;
count = Math.Min (count - 1, output.Length - dst);
alpha <<= 24;
while (count --> 0)
{
uint px = output[dst] & 0xFFFFFFu;
output[dst++] = px | alpha;
}
}
}
int ReadNext ()
{
int shift = FlowMap3[m_cur_bits];
m_cur_bits = FlowMap1[m_cur_bits];
if (0 == m_cur_bits)
{
do
{
m_cur_bits = m_input.ReadUInt8();
shift += FlowMap4[m_cur_bits];
}
while (0 == FlowMap2[m_cur_bits]);
m_cur_bits = FlowMap2[m_cur_bits];
}
int bits = m_cur_bits + 256;
int v12 = FlowMap5[m_cur_bits];
if (shift > v12)
{
bits <<= v12;
bits &= ~0xFF;
bits += m_input.ReadUInt8();
shift -= v12 + 1;
if (shift >= 8)
{
int count = shift >> 3;
shift -= count << 3;
do
{
bits += m_input.ReadUInt8();
bits <<= 8;
--count;
}
while (count > 0);
}
bits = bits << 1 | 1;
shift &= 0xFF;
}
bits <<= shift;
m_cur_bits = (byte)bits;
return bits >> 8;
}
int[] m_offset_table = new int[18];
static readonly sbyte[] OffsetsX = { -1, 0, 1, -1, 0, -2, 0, -3, 0, -4, 0, -5, 0, -6, 0, -7, 0, -8 };
static readonly sbyte[] OffsetsY = { 0, -1, -1, -1, -2, 0, -3, 0, -4, 0, -5, 0, -6, 0, -7, 0, -8, 0 };
static readonly byte[] ControlTable = new byte[38];
static readonly byte[] ControlMap = new byte[] {
2, 1, 0, 3, 4, 5, 10, 11, 12, 13, 14, 15, 22, 23, 24, 25, 26, 27, 28, 29,
6, 8, 7, 9, 16, 17, 18, 19, 20, 21, 30, 31, 32, 33, 34, 35, 36, 37
};
void InitOffsetTable ()
{
for (int i = 0; i < 18; ++i)
{
m_offset_table[i] = OffsetsX[i] + m_info.iWidth * OffsetsY[i];
}
}
static readonly byte[] FlowMap1 = new byte[256];
static readonly byte[] FlowMap2 = new byte[256];
static readonly byte[] FlowMap3 = new byte[256];
static readonly byte[] FlowMap4 = new byte[256];
static readonly byte[] FlowMap5 = new byte[256];
static FdReader ()
{
for (int i = 0; i < 38; ++i)
{
if (1 == i)
ControlTable[1] = 38;
else
ControlTable[ControlMap[i]] = (byte)i;
}
for (int i = 0; i < 256; ++i)
{
sbyte v = (sbyte)i;
byte n = 0;
if (i > 0)
{
while (v < 0)
{
v <<= 1;
++n;
}
v <<= 1;
if (0 == v)
--n;
}
FlowMap1[i] = (byte)v;
FlowMap3[i] = ++n;
v = (sbyte)i;
n = 0;
if (i > 0)
{
while (v < 0)
{
v <<= 1;
++n;
}
v <<= 1;
}
FlowMap4[i] = n;
FlowMap2[i] = (byte)(v + (1 << n));
v = (sbyte)i;
n = 0;
while ((v & 0x7F) != 0)
{
v <<= 1;
++n;
}
FlowMap5[i] = n;
}
}
}
}