1
0
mirror of https://github.com/crskycode/GARbro.git synced 2025-01-15 06:13:53 +08:00
morkt 13cf289bae (ImageFormat.ReadPalette): new static methods.
Generalized image palette deserializations.
2017-01-14 16:27:11 +04:00

2777 lines
100 KiB
C#

// *****************************************************************************
// E R I S A - L i b r a r y
// -----------------------------------------------------------------------------
// Copyright (C) 2002-2004 Leshade Entis, Entis-soft. All rights reserved.
// *****************************************************************************
//
// C# port by morkt
//
using System;
using System.Diagnostics;
using System.IO;
using System.Windows.Media;
using System.Windows.Media.Imaging;
namespace GameRes.Formats.Entis
{
internal class EriReader
{
EriMetaData m_info;
byte[] m_output;
ERISADecodeContext m_context;
int m_dst;
int m_nBlockSize;
int m_nBlockArea;
int m_nBlockSamples;
int m_nChannelCount;
int m_nWidthBlocks;
int m_nHeightBlocks;
int m_dwBytesPerLine;
int m_ptrDstBlock;
int m_nDstLineBytes;
int m_nDstPixelBytes;
int m_nDstWidth;
int m_nDstHeight;
// buffers for lossless encoding
byte[] m_ptrOperations;
sbyte[] m_ptrColumnBuf;
sbyte[] m_ptrLineBuf;
sbyte[] m_ptrDecodeBuf;
sbyte[] m_ptrArrangeBuf;
int[] m_pArrangeTable = new int[4];
// lossy encoding
int m_nBlocksetCount;
int m_nYUVLineBytes;
int m_nYUVPixelBytes;
sbyte[] m_ptrLossyOps;
float[] m_ptrVertBufLOT;
float[] m_ptrHorzBufLOT;
float[][] m_ptrBlocksetBuf;
float[] m_ptrMatrixBuf;
float[] m_ptrIQParamBuf;
byte[] m_ptrIQParamTable;
sbyte[] m_ptrBlockLineBuf;
sbyte[] m_ptrNextBlockBuf;
sbyte[] m_ptrImageBuf;
sbyte[] m_ptrYUVImage;
sbyte[] m_ptrMovingVector;
sbyte[] m_ptrMoveVecFlags;
int[] m_ptrMovePrevBlocks;
int[] m_ptrNextPrevBlocks;
HuffmanTree m_pHuffmanTree;
ErisaProbModel m_pProbERISA;
PtrProcedure[] m_pfnColorOperation;
byte[] m_src_frame;
public byte[] Data { get { return m_output; } }
public PixelFormat Format { get; private set; }
public int Stride { get { return Math.Abs (m_dwBytesPerLine); } }
public BitmapPalette Palette { get; private set; }
public EriReader (Stream stream, EriMetaData info, Color[] palette, byte[] key_frame = null)
{
m_info = info;
m_src_frame = key_frame;
switch (m_info.Architecture)
{
case EriCode.Nemesis:
case EriCode.RunlengthHuffman:
case EriCode.RunlengthGamma:
if (CvType.Lossless_ERI == m_info.Transformation && 0 == m_info.BlockingDegree)
throw new InvalidFormatException();
break;
case EriCode.ArithmeticCode:
if (CvType.Lossless_ERI != m_info.Transformation)
throw new InvalidFormatException();
break;
default:
throw new InvalidFormatException();
}
switch (m_info.FormatType & EriType.Mask)
{
case EriType.RGB:
if (m_info.BPP <= 8)
m_nChannelCount = 1;
else if (0 == (m_info.FormatType & EriType.WithAlpha))
m_nChannelCount = 3;
else
m_nChannelCount = 4;
break;
case EriType.Gray:
m_nChannelCount = 1;
break;
default:
throw new InvalidFormatException();
}
if (CvType.Lossless_ERI == m_info.Transformation)
InitializeLossless();
else if (CvType.LOT_ERI == m_info.Transformation
|| CvType.DCT_ERI == m_info.Transformation)
InitializeLossy();
else
throw new NotSupportedException ("Not supported ERI compression");
if (null != palette)
Palette = new BitmapPalette (palette);
CreateImageBuffer();
m_context.AttachInputFile (stream);
m_pfnColorOperation = new PtrProcedure[0x10]
{
ColorOperation0000,
ColorOperation0000,
ColorOperation0000,
ColorOperation0000,
ColorOperation0000,
ColorOperation0101,
ColorOperation0110,
ColorOperation0111,
ColorOperation0000,
ColorOperation1001,
ColorOperation1010,
ColorOperation1011,
ColorOperation0000,
ColorOperation1101,
ColorOperation1110,
ColorOperation1111
};
}
private void InitializeLossless ()
{
if (0 != m_info.BlockingDegree)
{
m_nBlockSize = 1 << m_info.BlockingDegree;
m_nBlockArea = 1 << (m_info.BlockingDegree * 2);
m_nBlockSamples = m_nBlockArea * m_nChannelCount;
m_nWidthBlocks = ((int)m_info.Width + m_nBlockSize - 1) >> m_info.BlockingDegree;
m_nHeightBlocks = ((int)m_info.Height + m_nBlockSize - 1) >> m_info.BlockingDegree;
m_ptrOperations = new byte[m_nWidthBlocks * m_nHeightBlocks];
m_ptrColumnBuf = new sbyte[m_nBlockSize * m_nChannelCount];
m_ptrLineBuf = new sbyte[m_nChannelCount * (m_nWidthBlocks << m_info.BlockingDegree)];
m_ptrDecodeBuf = new sbyte[m_nBlockSamples];
m_ptrArrangeBuf = new sbyte[m_nBlockSamples];
InitializeArrangeTable();
}
if (0x00020200 == m_info.Version)
{
if (EriCode.RunlengthHuffman == m_info.Architecture)
{
m_pHuffmanTree = new HuffmanTree();
}
else if (EriCode.Nemesis == m_info.Architecture)
{
m_pProbERISA = new ErisaProbModel();
}
}
if (EriCode.RunlengthHuffman == m_info.Architecture)
m_context = new HuffmanDecodeContext (0x10000);
else if (EriCode.Nemesis == m_info.Architecture)
m_context = new ProbDecodeContext (0x10000);
else
m_context = new RLEDecodeContext (0x10000);
}
private void InitializeLossy ()
{
if (3 != m_info.BlockingDegree)
throw new InvalidFormatException();
m_nBlockSize = 1 << m_info.BlockingDegree;
m_nBlockArea = 1 << (m_info.BlockingDegree * 2);
m_nBlockSamples = m_nBlockArea * m_nChannelCount;
m_nWidthBlocks = ((int)m_info.Width + m_nBlockSize * 2 - 1) >> (m_info.BlockingDegree + 1);
m_nHeightBlocks = ((int)m_info.Height + m_nBlockSize * 2 - 1) >> (m_info.BlockingDegree + 1);
if (CvType.LOT_ERI == m_info.Transformation)
{
++m_nWidthBlocks;
++m_nHeightBlocks;
}
if (EriSampling.YUV_4_4_4 == m_info.SamplingFlags)
{
m_nBlocksetCount = m_nChannelCount * 4;
}
else if (EriSampling.YUV_4_1_1 == m_info.SamplingFlags)
{
switch (m_nChannelCount)
{
case 1:
m_nBlocksetCount = 4;
break;
case 3:
m_nBlocksetCount = 6;
break;
case 4:
m_nBlocksetCount = 10;
break;
default:
throw new InvalidFormatException();
}
}
else
throw new InvalidFormatException();
m_ptrDecodeBuf = new sbyte[m_nBlockArea * 16];
m_ptrVertBufLOT = new float[m_nBlockSamples * 2 * m_nWidthBlocks];
m_ptrHorzBufLOT = new float[m_nBlockSamples * 2];
m_ptrBlocksetBuf = new float[16][];
m_ptrMatrixBuf = new float[m_nBlockArea * 16];
m_ptrIQParamBuf = new float[m_nBlockArea * 2];
m_ptrIQParamTable = new byte[m_nBlockArea * 2];
int dwTotalBlocks = m_nWidthBlocks * m_nHeightBlocks;
m_ptrLossyOps = new sbyte[dwTotalBlocks * 2];
m_ptrImageBuf = new sbyte[dwTotalBlocks * m_nBlockArea * m_nBlocksetCount];
m_ptrMovingVector = new sbyte[dwTotalBlocks * 4];
m_ptrMoveVecFlags = new sbyte[dwTotalBlocks];
m_ptrMovePrevBlocks = new int[dwTotalBlocks * 4];
for (int i = 0; i < 16; i ++)
{
m_ptrBlocksetBuf[i] = new float[m_nBlockArea];
}
m_nYUVPixelBytes = m_nChannelCount;
if (3 == m_nYUVPixelBytes)
{
m_nYUVPixelBytes = 4;
}
m_nYUVLineBytes = ((m_nYUVPixelBytes * m_nWidthBlocks * m_nBlockSize * 2) + 0xF) & (~0xF);
int nYUVImageSize = m_nYUVLineBytes * m_nHeightBlocks * m_nBlockSize * 2;
m_ptrBlockLineBuf = new sbyte[m_nYUVLineBytes * 16];
m_ptrYUVImage = new sbyte[nYUVImageSize];
InitializeZigZagTable();
m_pHuffmanTree = new HuffmanTree();
m_pProbERISA = new ErisaProbModel();
m_context = new HuffmanDecodeContext (0x10000);
}
int[] m_ptrTable;
void InitializeArrangeTable ()
{
int i, j, k, l, m;
m_ptrTable = new int[m_nBlockSamples * 4];
m_pArrangeTable[0] = 0;
m_pArrangeTable[1] = m_nBlockSamples;
m_pArrangeTable[2] = m_nBlockSamples * 2;
m_pArrangeTable[3] = m_nBlockSamples * 3;
int ptrNext = m_pArrangeTable[0];
for (i = 0; i < m_nBlockSamples; ++i)
{
m_ptrTable[ptrNext+i] = i;
}
ptrNext = m_pArrangeTable[1];
l = 0;
for (i = 0; i < m_nChannelCount; i++)
{
for (j = 0; j < m_nBlockSize; j++)
{
m = l + j;
for (k = 0; k < m_nBlockSize; k++)
{
m_ptrTable[ptrNext++] = m;
m += m_nBlockSize;
}
}
l += m_nBlockArea;
}
ptrNext = m_pArrangeTable[2];
for (i = 0; i < m_nBlockArea; i++)
{
k = i;
for (j = 0; j < m_nChannelCount; j++)
{
m_ptrTable[ptrNext++] = k;
k += m_nBlockArea;
}
}
ptrNext = m_pArrangeTable[3];
for (i = 0; i < m_nBlockSize; i++)
{
l = i;
for (j = 0; j < m_nBlockSize; j++)
{
m = l;
l += m_nBlockSize;
for (k = 0; k < m_nChannelCount; k++)
{
m_ptrTable[ptrNext++] = m;
m += m_nBlockArea;
}
}
}
}
void InitializeZigZagTable ()
{
m_ptrTable = new int[m_nBlockArea];
m_pArrangeTable[0] = 0;
uint i = 0;
int x = 0, y = 0;
for (;;)
{
for (;;)
{
m_ptrTable[i++] = x + y * m_nBlockSize;
if (i >= m_nBlockArea)
return;
++x;
--y;
if (x >= m_nBlockSize)
{
--x;
y += 2;
break;
}
else if (y < 0)
{
y = 0;
break;
}
}
for (;;)
{
m_ptrTable[i++] = x + y * m_nBlockSize;
if (i >= m_nBlockArea)
return;
++y;
--x;
if (y >= m_nBlockSize)
{
--y;
x += 2;
break;
}
else if (x < 0)
{
x = 0;
break;
}
}
}
}
private void CreateImageBuffer ()
{
m_dwBytesPerLine = (((int)m_info.Width * m_info.BPP / 8) + 3) & ~3;
m_output = new byte[m_dwBytesPerLine * (int)m_info.Height];
if (!m_info.VerticalFlip)
{
m_dst = ((int)m_info.Height - 1) * m_dwBytesPerLine;
m_dwBytesPerLine = -m_dwBytesPerLine;
}
else
{
m_dst = 0;
}
}
public void DecodeImage ()
{
if (CvType.Lossless_ERI == m_info.Transformation)
DecodeLosslessImage (m_context as RLEDecodeContext);
else
DecodeLossyImage (m_context as HuffmanDecodeContext);
}
private delegate void PtrProcedure ();
private void DecodeLosslessImage (RLEDecodeContext context)
{
context.FlushBuffer();
uint nERIVersion = context.GetNBits (8);
uint fOpTable = context.GetNBits (8);
uint fEncodeType = context.GetNBits (8);
uint nBitCount = context.GetNBits (8);
if (0 != fOpTable || 0 != (fEncodeType & 0xFE))
{
throw new InvalidFormatException();
}
switch (nERIVersion)
{
case 1:
if (nBitCount != 0)
throw new InvalidFormatException();
break;
case 2:
if (nBitCount != 0 || fEncodeType != 0)
throw new InvalidFormatException();
DecodeType2Image (context);
return;
case 4:
DecodeType4Image (context);
return;
case 8:
if (nBitCount != 8)
throw new InvalidFormatException();
break;
case 16:
if ((nBitCount != 8) || (fEncodeType != 0))
throw new InvalidFormatException();
break;
default:
throw new InvalidFormatException();
}
m_nDstPixelBytes = m_info.BPP >> 3;
m_nDstLineBytes = m_dwBytesPerLine;
var pfnRestoreFunc = GetLLRestoreFunc (m_info.FormatType, m_info.BPP);
if (null == pfnRestoreFunc)
throw new InvalidFormatException();
if (EriCode.Nemesis == m_info.Architecture)
{
Debug.Assert (m_pProbERISA != null);
m_pProbERISA.Initialize();
}
int i;
int ptrNextOperation = 0; // index within m_ptrOperations
if ((0 != (fEncodeType & 1)) && (m_nChannelCount >= 3))
{
if (m_info.Architecture == EriCode.Nemesis)
throw new InvalidFormatException();
int nAllBlockCount = m_nWidthBlocks * m_nHeightBlocks;
for (i = 0; i < nAllBlockCount; i++)
{
if (EriCode.RunlengthGamma == m_info.Architecture)
{
m_ptrOperations[i] = (byte)(context.GetNBits(4) | 0xC0);
}
else
{
Debug.Assert (EriCode.RunlengthHuffman == m_info.Architecture);
m_ptrOperations[i] = (byte)(context as HuffmanDecodeContext).GetHuffmanCode (m_pHuffmanTree);
}
}
}
if (context.GetABit() != 0)
throw new InvalidFormatException();
if (EriCode.RunlengthGamma == m_info.Architecture)
{
if (0 != (fEncodeType & 1))
{
context.InitGammaContext();
}
}
else if (EriCode.RunlengthHuffman == m_info.Architecture)
{
(context as HuffmanDecodeContext).PrepareToDecodeERINACode();
}
else
{
Debug.Assert (EriCode.Nemesis == m_info.Architecture);
(context as ProbDecodeContext).PrepareToDecodeERISACode();
}
int nWidthSamples = m_nChannelCount * m_nWidthBlocks * m_nBlockSize;
for (i = 0; i < nWidthSamples; ++i)
m_ptrLineBuf[i] = 0;
int nAllBlockLines = m_nBlockSize * m_nChannelCount;
int nLeftHeight = (int)m_info.Height;
for (int nPosY = 0; nPosY < m_nHeightBlocks; ++nPosY)
{
int nColumnBufSamples = m_nBlockSize * m_nChannelCount;
for (i = 0; i < nColumnBufSamples; ++i)
m_ptrColumnBuf[i] = 0;
m_ptrDstBlock = m_dst + nPosY * m_dwBytesPerLine * m_nBlockSize;
m_nDstHeight = Math.Min (m_nBlockSize, nLeftHeight);
int nLeftWidth = (int)m_info.Width;
int ptrNextLineBuf = 0; // m_ptrLineBuf;
for (int nPosX = 0; nPosX < m_nWidthBlocks; ++nPosX)
{
m_nDstWidth = Math.Min (m_nBlockSize, nLeftWidth);
uint dwOperationCode;
if (m_nChannelCount >= 3)
{
if (0 != (fEncodeType & 1))
{
dwOperationCode = m_ptrOperations[ptrNextOperation++];
}
else if (m_info.Architecture == EriCode.RunlengthHuffman)
{
dwOperationCode = (uint)(context as HuffmanDecodeContext).GetHuffmanCode (m_pHuffmanTree);
}
else if (m_info.Architecture == EriCode.Nemesis)
{
dwOperationCode = (uint)(context as ProbDecodeContext).DecodeERISACode (m_pProbERISA);
}
else
{
Debug.Assert (EriCode.RunlengthGamma == m_info.Architecture);
dwOperationCode = context.GetNBits (4) | 0xC0;
context.InitGammaContext();
}
}
else
{
if (EriType.Gray == m_info.FormatType)
{
dwOperationCode = 0xC0;
}
else
{
dwOperationCode = 0;
}
if (0 == (fEncodeType & 1) && m_info.Architecture == EriCode.RunlengthGamma)
{
context.InitGammaContext();
}
}
if (context.DecodeBytes (m_ptrArrangeBuf, (uint)m_nBlockSamples) < m_nBlockSamples)
{
throw new InvalidFormatException();
}
PerformOperation (dwOperationCode, nAllBlockLines, m_ptrLineBuf, ptrNextLineBuf);
ptrNextLineBuf += nColumnBufSamples;
pfnRestoreFunc();
m_ptrDstBlock += m_nDstPixelBytes * m_nBlockSize;
nLeftWidth -= m_nBlockSize;
}
nLeftHeight -= m_nBlockSize;
}
}
#pragma warning disable 162 // unreachable code
private void DecodeType2Image (RLEDecodeContext context)
{
if (m_info.BPP != 8)
throw new InvalidFormatException();
throw new NotImplementedException ("Arithmetic compression not implemented");
if (EriCode.ArithmeticCode == m_info.Architecture)
{
// (context as ArithmeticContext).InitArithmeticContext (8);
m_ptrLineBuf = new sbyte[m_info.Width*4];
}
else
throw new NotImplementedException();
int dst = m_dst;
for (int nPosY = 0; nPosY < (int)m_info.Height; ++nPosY)
{
if (context.DecodeBytes (m_ptrLineBuf, m_info.Width) < m_info.Width)
throw new InvalidFormatException();
for (int x = 0; x < (int)m_info.Width; ++x)
m_output[dst+x] = (byte)m_ptrLineBuf[4 * x];
dst += m_dwBytesPerLine;
}
}
private void DecodeType4Image (RLEDecodeContext context)
{
throw new NotImplementedException ("Arithmetic compression not implemented");
}
private void DecodeLossyImage (HuffmanDecodeContext context)
{
context.FlushBuffer();
uint nERIVersion = context.GetNBits (8);
uint fOpTable = context.GetNBits (8);
uint fEncodeType = context.GetNBits (8);
uint nBitCount = context.GetNBits (8);
var orig_trans = m_info.Transformation;
CalcImageSizeInBlocks ((fEncodeType == 1) ? CvType.DCT_ERI : orig_trans);
m_ptrDstBlock = m_dst;
m_nDstPixelBytes = m_info.BPP >> 3;
m_nDstLineBytes = m_dwBytesPerLine;
m_nDstWidth = (int)m_info.Width;
m_nDstHeight = (int)m_info.Height;
if (9 == nERIVersion)
{
if (fOpTable != 0 || (fEncodeType & 0xFE) != 0 || nBitCount != 8)
throw new InvalidFormatException();
DecodeLossyV9 (context, fEncodeType);
return;
}
var pfnRestoreFunc = GetLSRestoreFunc (m_info.FormatType, m_info.BPP);
if (null == pfnRestoreFunc)
throw new InvalidFormatException();
if (context.GetABit() != 0)
throw new InvalidFormatException();
if (0x28 == nERIVersion)
{
if (EriCode.RunlengthGamma != m_info.Architecture)
throw new InvalidFormatException();
Debug.Assert (m_pHuffmanTree != null);
context.PrepareToDecodeERINACode (HuffmanDecodeContext.efERINAOrder0);
}
else
throw new InvalidFormatException();
throw new NotImplementedException ("Lossy ERI compression not implemented");
for (int i = 0; i < m_nBlockArea * 2; ++i)
{
m_ptrIQParamTable[i] = (byte)context.GetHuffmanCode (m_pHuffmanTree);
}
int nTotalBlocks = m_nWidthBlocks * m_nHeightBlocks;
int nTotalSamples = nTotalBlocks * m_nBlockArea * m_nBlocksetCount;
context.InitGammaContext();
if (context.DecodeGammaCodeBytes (m_ptrLossyOps, (uint)nTotalBlocks * 2) < nTotalBlocks * 2)
throw new InvalidFormatException();
Debug.Assert (8 == m_nBlockSize);
const int nBlockSize = 16;
uint nWidthDivBlocks = (m_info.Width + (nBlockSize - 1)) / nBlockSize;
uint nHeightDivBlocks = (m_info.Height + (nBlockSize - 1)) / nBlockSize;
uint nTotalDivBlocks = nWidthDivBlocks * nHeightDivBlocks;
if (0 != (fOpTable & 1))
{
context.InitGammaContext();
if (context.DecodeGammaCodeBytes (m_ptrMoveVecFlags, nTotalDivBlocks) < nTotalDivBlocks)
throw new InvalidFormatException();
context.InitGammaContext();
if (context.DecodeGammaCodeBytes (m_ptrMovingVector, nTotalDivBlocks * 4) < nTotalDivBlocks * 4 )
throw new InvalidFormatException();
}
else if (null != m_src_frame)
{
for (uint i = 0; i < nTotalDivBlocks; ++i)
m_ptrMoveVecFlags[i] = 1;
for (uint i = 0; i < nTotalDivBlocks*4; ++i)
m_ptrMovingVector[i] = 0;
}
if (null != m_src_frame)
{
SetupMovingVector();
}
if (CvType.LOT_ERI == m_info.Transformation)
{
for (int i = 0; i < m_ptrVertBufLOT.Length; ++i)
m_ptrVertBufLOT[i] = 0;
}
Action<float[], int> pfnBlockMatrix;
if (CvType.LOT_ERI == m_info.Transformation)
pfnBlockMatrix = MatrixILOT8x8;
else
pfnBlockMatrix = MatrixIDCT8x8;
Action<int, int> pfnBlockScaling;
if (EriSampling.YUV_4_1_1 == m_info.SamplingFlags)
pfnBlockScaling = BlockScaling411;
else
pfnBlockScaling = BlockScaling444;
int ptrQParam = 0; // m_ptrLossyOps
int nLineBlockSamples = m_nWidthBlocks * m_nBlockArea * m_nBlocksetCount;
m_ptrNextPrevBlocks = m_ptrMovePrevBlocks;
for (int nPosY = 0; nPosY < m_nHeightBlocks; ++nPosY)
{
if (CvType.LOT_ERI == m_info.Transformation)
{
for (int i = 0; i < m_ptrHorzBufLOT.Length; ++i)
m_ptrHorzBufLOT[i] = 0;
}
int ptrVertBufLOT = 0; // m_ptrVertBufLOT;
m_ptrNextBlockBuf = m_ptrBlockLineBuf;
if (context.DecodeBytes (m_ptrImageBuf, (uint)nLineBlockSamples) < nLineBlockSamples)
throw new InvalidFormatException();
int ptrSrcData = 0; // m_ptrImageBuf;
for (int nPosX = 0; nPosX < m_nWidthBlocks; ++nPosX)
{
ArrangeAndIQuantumize (ptrSrcData, ptrQParam);
ptrSrcData += m_nBlockArea * m_nBlocksetCount;
ptrQParam += 2;
pfnBlockMatrix (m_ptrVertBufLOT, ptrVertBufLOT);
ptrVertBufLOT += m_nBlockArea * 2 * m_nChannelCount;
pfnBlockScaling (nPosX, nPosY);
}
}
pfnRestoreFunc();
if (0 != (fOpTable & 0xC))
{
throw new NotImplementedException ("Filtering operations not implemented");
}
m_info.Transformation = orig_trans;
}
void DecodeLossyV9 (HuffmanDecodeContext context, uint fEncodeType)
{
throw new NotImplementedException();
/*
if (m_nChannelCount < 3)
throw new InvalidFormatException();
m_nDstPixelBytes = m_info.BPP >> 3;
var pfnRestoreFunc = GetLSRestoreFunc (m_info.FormatType, m_info.BPP);
if (null == pfnRestoreFunc)
throw new InvalidFormatException();
if (EriCode.RunlengthHuffman == m_info.Architecture)
context.PrepareToDecodeERINACode();
if (context.GetABit() != 0)
throw new InvalidFormatException();
float field_1A8 = 256.0f / (context.GetNBits (8) + 1);
uint v9 = context.GetNBits (8);
double field_1A4 = 2.0 / (double)m_nBlockSize;
int nTotalBlocks = m_nHeightBlocks * m_nWidthBlocks;
bool is_encode_type_1 = (fEncodeType & 1) != 0;
field_1A8 = (float)(field_1A8 * field_1A4);
float field_1AC = (float)(256.0 / (v9 + 1) * field_1A4);
if (is_encode_type_1)
{
uint v12 = (uint)(nTotalBlocks * m_nBlocksetCount);
context.InitGammaContext();
if (context.DecodeGammaCodeBytes (m_ptrMoveVecFlags, v12) < v12)
throw new InvalidFormatException();
m_pHuffmanTree.Initialize();
int nAllBlockCount = 4 * nTotalBlocks;
for (int i = 0; i < nAllBlockCount; ++i)
{
m_ptrIQParamTable[i] = (byte)context.GetHuffmanCode (m_pHuffmanTree);
}
if (m_info.Architecture != EriCode.RunlengthHuffman)
context.InitGammaContext();
}
var field_70 = new byte[m_nBlocksetCount * 4];
int image_height = (int)m_info.Height;
int ptrSrcData = 0; // this->m_ptrMoveVecFlags;
int ptrQParam = 0; // this->m_ptrIQParamTable;
for (int nPosY = 0; nPosY < m_nHeightBlocks; ++nPosY)
{
int image_dst = (m_dwBytesPerLine * nPosY) << (m_info.BlockingDegree + 1);
int v48 = m_nBlockSize;
int v43 = m_nBlockSize;
if (image_height < m_nBlockSize)
{
v48 = image_height;
v43 = 0;
}
else if (image_height < 2 * m_nBlockSize)
{
v43 = image_height - m_nBlockSize;
}
int image_width = (int)m_info.Width;
for (int i = 0; i < m_nBlocksetCount; ++i)
{
m_ptrHorzBufLOT[i] = 0;
}
for (int nPosX = 0; nPosX < m_nWidthBlocks; ++nPosX)
{
if (is_encode_type_1)
{
Buffer.BlockCopy (m_ptrMoveVecFlags, ptrSrcData, field_70, 0, 4 * m_nBlocksetCount);
ptrSrcData += 4 * m_nBlocksetCount;
}
else
{
context.InitGammaContext();
if (context.DecodeGammaCodeBytes (field_70, m_nBlocksetCount) < m_nBlocksetCount)
throw new InvalidFormatException();
m_ptrIQParamTable[ptrQParam ] = (byte)context.GetHuffmanCode (m_pHuffmanTree);
m_ptrIQParamTable[ptrQParam+1] = (byte)context.GetHuffmanCode (m_pHuffmanTree);
m_ptrIQParamTable[ptrQParam+2] = (byte)context.GetHuffmanCode (m_pHuffmanTree);
m_ptrIQParamTable[ptrQParam+3] = (byte)context.GetHuffmanCode (m_pHuffmanTree);
}
int v23 = m_nBlocksetCount * (m_nBlockArea - 1);
if (EriCode.RunlengthHuffman == m_info.dwArchitecture)
{
if (sub_439080 (&this->field_70[4 * m_nBlocksetCount], v23) < v23 )
throw new InvalidFormatException();
}
else
{
if (!is_encode_type_1)
context.InitGammaContext();
if (context.DecodeGammaCodeBytes ((SBYTE *)&this->field_70[4 * this->m_nBlocksetCount], v23) < v23)
throw new InvalidFormatException();
}
for (int v24 = 0; v24 < m_nBlocksetCount; ++v24)
{
uint v27 = LittleEndian.ToUInt32 (field_70, v24 * 4) + m_ptrHorzBufLOT[v24];
m_ptrHorzBufLOT[v24] = v27;
LittleEndian.Pack (v27, field_70, v24 * 4);
}
sub_43ADE0 (this, (int)ptrQParam, (int)ptrQParam);
ptrQParam += 4;
sub_425A49 (this);
field_94 (this);
sub_43B1B0 (this);
int v29 = m_nBlockSize;
int v30 = m_nBlockSize;
if (image_width < m_nBlockSize)
{
v29 = image_width;
v30 = 0;
}
else if (image_width < 2 * m_nBlockSize)
{
v30 = image_width - m_nBlockSize;
}
int v59 = v30;
int v61 = v30;
int v58 = v29;
int v54 = v48;
int v55 = v48;
int v60 = v29;
int v56 = v43;
int v57 = v43;
int v31 = m_nDstPixelBytes;
int v62 = 0;
v32 = (float *)this->m_ptrBlocksetBuf;
v63 = m_nBlockSize * v31;
v33 = m_dwBytesPerLine;
v64 = m_nBlockSize * v33;
v65 = m_nBlockSize * (v33 + v31);
for (int v34 = 0; v34 < 16; v34 += 4)
{
v35 = v66;
v36 = v32;
v37 = 4;
do
{
v38 = *v36;
v36 += 4;
*v35 = v38;
++v35;
--v37;
}
while ( v37 );
pfnRestoreFunc (
&image_dst[*(int *)((char *)&v62 + v34)],
imginf->dwBytesPerLine,
v66,
*(uint *)((char *)&v58 + v34),
*(uint *)((char *)&v54 + v34));
++v32;
}
image_width -= 2 * m_nBlockSize;
image_dst += m_nDstPixelBytes << (m_info.BlockingDegree + 1);
}
image_height -= 2 * m_nBlockSize;
}
*/
}
void CalcImageSizeInBlocks (CvType fdwTransformation)
{
m_info.Transformation = fdwTransformation;
m_nWidthBlocks = (((int)m_info.Width + m_nBlockSize * 2 - 1) >> (m_info.BlockingDegree + 1));
m_nHeightBlocks = ((int)m_info.Height + m_nBlockSize * 2 - 1) >> (m_info.BlockingDegree + 1);
if (CvType.LOT_ERI == fdwTransformation)
{
++m_nWidthBlocks;
++m_nHeightBlocks;
}
}
void SetupMovingVector ()
{
throw new NotImplementedException ("Lossy delta compression not implemented");
}
void PerformOperation (uint dwOpCode, int nAllBlockLines, sbyte[] pNextLineBuf, int iNextLineIdx )
{
int i, j, k;
uint nArrangeCode, nColorOperation, nDiffOperation;
nColorOperation = dwOpCode & 0x0F;
nArrangeCode = (dwOpCode >> 4) & 0x03;
nDiffOperation = (dwOpCode >> 6) & 0x03;
if (0 == nArrangeCode)
{
Buffer.BlockCopy (m_ptrArrangeBuf, 0, m_ptrDecodeBuf, 0, m_nBlockSamples);
if (0 == dwOpCode)
{
return;
}
}
else
{
int pArrange = m_pArrangeTable[nArrangeCode];
for (i = 0; i < m_nBlockSamples; i++)
{
m_ptrDecodeBuf[m_ptrTable[pArrange + i]] = m_ptrArrangeBuf[i];
}
}
m_pfnColorOperation[nColorOperation]();
int ptrNextBuf = 0; // m_ptrDecodeBuf
int ptrNextColBuf = 0; // m_ptrColumnBuf
if (0 != (nDiffOperation & 1))
{
for (i = 0; i < nAllBlockLines; i++)
{
sbyte nLastVal = m_ptrColumnBuf[ptrNextColBuf];
for (j = 0; j < m_nBlockSize; j++)
{
nLastVal += m_ptrDecodeBuf[ptrNextBuf];
m_ptrDecodeBuf[ptrNextBuf++] = nLastVal;
}
m_ptrColumnBuf[ptrNextColBuf++] = nLastVal;
}
}
else
{
for (i = 0; i < nAllBlockLines; i ++)
{
m_ptrColumnBuf[ptrNextColBuf++] = m_ptrDecodeBuf[ptrNextBuf + m_nBlockSize - 1];
ptrNextBuf += m_nBlockSize;
}
}
int iNextDst = 0;
for (k = 0; k < m_nChannelCount; k++)
{
sbyte[] ptrLastLine = pNextLineBuf;
int idxLastLine = iNextLineIdx;
for (i = 0; i < m_nBlockSize; i++)
{
for (j = 0; j < m_nBlockSize; j++)
{
m_ptrDecodeBuf[iNextDst+j] += ptrLastLine[idxLastLine+j];
}
ptrLastLine = m_ptrDecodeBuf;
idxLastLine = iNextDst;
iNextDst += m_nBlockSize;
}
Buffer.BlockCopy (ptrLastLine, idxLastLine, pNextLineBuf, iNextLineIdx, m_nBlockSize);
iNextLineIdx += m_nBlockSize;
}
}
PtrProcedure GetLLRestoreFunc (EriType fdwFormatType, int dwBitsPerPixel)
{
switch (dwBitsPerPixel)
{
case 32:
if (EriType.RGBA == fdwFormatType)
{
Format = PixelFormats.Bgra32;
if (null == m_src_frame)
return RestoreRGBA32;
else
return RestoreDeltaRGBA32;
}
Format = PixelFormats.Bgr32;
if (null == m_src_frame)
return RestoreRGB24;
else
return RestoreDeltaRGB24;
case 24:
Format = PixelFormats.Bgr24;
if (null == m_src_frame)
return RestoreRGB24;
else
return RestoreDeltaRGB24;
case 16:
Format = PixelFormats.Bgr555;
return RestoreRGB16;
case 8:
if (null == Palette)
Format = PixelFormats.Gray8;
else
Format = PixelFormats.Indexed8;
return RestoreGray8;
}
return null;
}
PtrProcedure GetLSRestoreFunc (EriType fdwFormatType, int dwBitsPerPixel)
{
switch (dwBitsPerPixel)
{
case 32:
if (EriType.RGBA == fdwFormatType)
{
Format = PixelFormats.Bgra32;
if (null == m_src_frame)
return LossyRestoreRGBA32;
else
return LossyRestoreDeltaRGBA32;
}
Format = PixelFormats.Bgr32;
if (null == m_src_frame)
return LossyRestoreRGB24;
else
return LossyRestoreDeltaRGB24;
case 24:
Format = PixelFormats.Bgr24;
if (null == m_src_frame)
return LossyRestoreRGB24;
else
return LossyRestoreDeltaRGB24;
case 8:
Format = PixelFormats.Gray8;
if (null == m_src_frame)
return LossyRestoreGray8;
else
return LossyRestoreDeltaGray8;
}
return null;
}
void RestoreRGBA32 ()
{
int ptrDstLine = m_ptrDstBlock;
int ptrSrcLine = 0; //m_ptrDecodeBuf;
int nBlockSamples = m_nBlockArea;
int nBlockSamplesX3 = nBlockSamples * 3;
for (uint y = 0; y < m_nDstHeight; y++)
{
int ptrDstNext = ptrDstLine;
int ptrSrcNext = ptrSrcLine;
for (uint x = 0; x < m_nDstWidth; x++)
{
m_output[ptrDstNext++] = (byte)m_ptrDecodeBuf[ptrSrcNext];
m_output[ptrDstNext++] = (byte)m_ptrDecodeBuf[ptrSrcNext + nBlockSamples];
m_output[ptrDstNext++] = (byte)m_ptrDecodeBuf[ptrSrcNext + nBlockSamples * 2];
m_output[ptrDstNext++] = (byte)m_ptrDecodeBuf[ptrSrcNext + nBlockSamplesX3];
ptrSrcNext ++;
}
ptrSrcLine += m_nBlockSize;
ptrDstLine += m_nDstLineBytes;
}
}
void RestoreRGB24()
{
int ptrDstLine = m_ptrDstBlock;
int ptrSrcLine = 0; //m_ptrDecodeBuf;
int nBytesPerPixel = m_nDstPixelBytes;
int nBlockSamples = m_nBlockArea;
for (uint y = 0; y < m_nDstHeight; y++)
{
int ptrDstNext = ptrDstLine;
int ptrSrcNext = ptrSrcLine;
for (uint x = 0; x < m_nDstWidth; x++)
{
m_output[ptrDstNext] = (byte)m_ptrDecodeBuf[ptrSrcNext];
m_output[ptrDstNext+1] = (byte)m_ptrDecodeBuf[ptrSrcNext + nBlockSamples];
m_output[ptrDstNext+2] = (byte)m_ptrDecodeBuf[ptrSrcNext + nBlockSamples * 2];
ptrSrcNext ++;
ptrDstNext += nBytesPerPixel;
}
ptrSrcLine += m_nBlockSize;
ptrDstLine += m_nDstLineBytes;
}
}
void RestoreDeltaRGBA32 ()
{
int ptrDstLine = m_ptrDstBlock;
int ptrSrcLine = 0; //m_ptrDecodeBuf;
int nBlockSamples = m_nBlockArea;
int nBlockSamplesX3 = nBlockSamples * 3;
for (uint y = 0; y < m_nDstHeight; y++)
{
int ptrDstNext = ptrDstLine;
int ptrSrcNext = ptrSrcLine;
for (uint x = 0; x < m_nDstWidth; x++)
{
m_output[ptrDstNext] = (byte)(m_src_frame[ptrDstNext] + m_ptrDecodeBuf[ptrSrcNext]);
m_output[ptrDstNext+1] = (byte)(m_src_frame[ptrDstNext+1] + m_ptrDecodeBuf[ptrSrcNext + nBlockSamples]);
m_output[ptrDstNext+2] = (byte)(m_src_frame[ptrDstNext+2] + m_ptrDecodeBuf[ptrSrcNext + nBlockSamples * 2]);
m_output[ptrDstNext+3] = (byte)(m_src_frame[ptrDstNext+3] + m_ptrDecodeBuf[ptrSrcNext + nBlockSamplesX3]);
ptrSrcNext ++;
ptrDstNext += 4;
}
ptrSrcLine += m_nBlockSize;
ptrDstLine += m_nDstLineBytes;
}
}
void RestoreDeltaRGB24()
{
int ptrDstLine = m_ptrDstBlock;
int ptrSrcLine = 0; //m_ptrDecodeBuf;
int nBytesPerPixel = m_nDstPixelBytes;
int nBlockSamples = m_nBlockArea;
for (uint y = 0; y < m_nDstHeight; y++)
{
int ptrDstNext = ptrDstLine;
int ptrSrcNext = ptrSrcLine;
for (uint x = 0; x < m_nDstWidth; x++)
{
m_output[ptrDstNext] = (byte)(m_src_frame[ptrDstNext] + m_ptrDecodeBuf[ptrSrcNext]);
m_output[ptrDstNext+1] = (byte)(m_src_frame[ptrDstNext+1] + m_ptrDecodeBuf[ptrSrcNext + nBlockSamples]);
m_output[ptrDstNext+2] = (byte)(m_src_frame[ptrDstNext+2] + m_ptrDecodeBuf[ptrSrcNext + nBlockSamples * 2]);
ptrSrcNext ++;
ptrDstNext += nBytesPerPixel;
}
ptrSrcLine += m_nBlockSize;
ptrDstLine += m_nDstLineBytes;
}
}
void RestoreRGB16()
{
int ptrDstLine = m_ptrDstBlock;
int ptrSrcLine = 0; //m_ptrDecodeBuf;
int nBlockSamples = m_nBlockArea;
for (uint y = 0; y < m_nDstHeight; y++)
{
int ptrDstNext = ptrDstLine;
int ptrSrcNext = ptrSrcLine;
for (uint x = 0; x < m_nDstWidth; x++)
{
int word = (m_ptrDecodeBuf[ptrSrcNext] & 0x1F) |
((m_ptrDecodeBuf[ptrSrcNext + nBlockSamples] & 0x1F) << 5) |
((m_ptrDecodeBuf[ptrSrcNext + nBlockSamples * 2] & 0x1F) << 10);
m_output[ptrDstNext++] = (byte)word;
m_output[ptrDstNext++] = (byte)(word >> 8);
ptrSrcNext ++;
}
ptrSrcLine += m_nBlockSize;
ptrDstLine += m_nDstLineBytes;
}
}
void RestoreGray8()
{
int ptrDstLine = m_ptrDstBlock;
int ptrSrcLine = 0; //m_ptrDecodeBuf;
for (uint y = 0; y < m_nDstHeight; y++)
{
Buffer.BlockCopy (m_ptrDecodeBuf, ptrSrcLine, m_output, ptrDstLine, m_nDstWidth);
ptrSrcLine += m_nBlockSize;
ptrDstLine += m_nDstLineBytes;
}
}
void LossyRestoreRGB24 ()
{
ConvertImageYUVtoRGB();
int nSrcLineBytes = m_nYUVLineBytes;
int nSrcPixelBytes = m_nYUVPixelBytes;
int ptrSrcImage = 0; // m_ptrYUVImage;
int nDstLineBytes = m_nDstLineBytes;
int nDstPixelBytes = m_nDstPixelBytes;
int ptrDstImage = m_ptrDstBlock;
int nWidth = m_nDstWidth;
for (uint y = 0; y < m_nDstHeight; ++y)
{
int ptrSrcLine = ptrSrcImage;
int ptrDstLine = ptrDstImage;
for (uint x = 0; x < nWidth; ++x)
{
m_output[ptrDstLine] = (byte)m_ptrYUVImage[ptrSrcLine];
m_output[ptrDstLine+1] = (byte)m_ptrYUVImage[ptrSrcLine+1];
m_output[ptrDstLine+2] = (byte)m_ptrYUVImage[ptrSrcLine+2];
ptrSrcLine += nSrcPixelBytes;
ptrDstLine += nDstPixelBytes;
}
ptrSrcImage += nSrcLineBytes;
ptrDstImage += nDstLineBytes;
}
}
void LossyRestoreRGBA32 ()
{
ConvertImageYUVtoRGB();
int nSrcLineBytes = m_nYUVLineBytes;
int ptrSrcImage = 0; //m_ptrYUVImage;
int nDstLineBytes = m_nDstLineBytes;
int ptrDstImage = m_ptrDstBlock;
int nLineBytes = m_nDstWidth*4;
for (uint y = 0; y < m_nDstHeight; ++y)
{
Buffer.BlockCopy (m_ptrYUVImage, ptrSrcImage, m_output, ptrDstImage, nLineBytes);
ptrSrcImage += nSrcLineBytes;
ptrDstImage += nDstLineBytes;
}
}
void LossyRestoreDeltaRGB24 ()
{
MoveImageWithVector();
ConvertImageYUVtoRGB (m_src_frame != null);
int nSrcLineBytes = m_nYUVLineBytes;
int nSrcPixelBytes = m_nYUVPixelBytes;
int ptrSrcImage = 0; //m_ptrYUVImage;
int nDstLineBytes = m_nDstLineBytes;
int nDstPixelBytes = m_nDstPixelBytes;
int ptrDstImage = m_ptrDstBlock;
int nWidth = m_nDstWidth;
for (uint y = 0; y < m_nDstHeight; ++y)
{
int ptrSrcLine = ptrSrcImage;
int ptrDstLine = ptrDstImage;
for (uint x = 0; x < nWidth; ++x)
{
int b = m_src_frame[ptrDstLine] + (m_ptrYUVImage[ptrSrcLine] << 1);
int g = m_src_frame[ptrDstLine+1] + (m_ptrYUVImage[ptrSrcLine+1] << 1);
int r = m_src_frame[ptrDstLine+2] + (m_ptrYUVImage[ptrSrcLine+2] << 1);
if ((uint)b > 0xFF)
{
b = (~b >> 31) & 0xFF;
}
if ((uint)g > 0xFF)
{
g = (~g >> 31) & 0xFF;
}
if ((uint)r > 0xFF)
{
r = (~r >> 31) & 0xFF;
}
m_output[ptrDstLine] = (byte)b;
m_output[ptrDstLine+1] = (byte)g;
m_output[ptrDstLine+2] = (byte)r;
ptrSrcLine += nSrcPixelBytes;
ptrDstLine += nDstPixelBytes;
}
ptrSrcImage += nSrcLineBytes;
ptrDstImage += nDstLineBytes;
}
}
void LossyRestoreDeltaRGBA32 ()
{
MoveImageWithVector();
ConvertImageYUVtoRGB (m_src_frame != null);
int nSrcLineBytes = m_nYUVLineBytes;
int ptrSrcImage = 0; // m_ptrYUVImage;
int nDstLineBytes = m_nDstLineBytes;
int ptrDstImage = m_ptrDstBlock;
int nWidth = m_nDstWidth;
for (uint y = 0; y < m_nDstHeight; ++y)
{
int ptrSrcLine = ptrSrcImage;
int ptrDstLine = ptrDstImage;
for (uint x = 0; x < nWidth; ++x)
{
int b = m_src_frame[ptrDstLine] + (m_ptrYUVImage[ptrSrcLine] << 1);
int g = m_src_frame[ptrDstLine+1] + (m_ptrYUVImage[ptrSrcLine+1] << 1);
int r = m_src_frame[ptrDstLine+2] + (m_ptrYUVImage[ptrSrcLine+2] << 1);
int a = m_src_frame[ptrDstLine+3] + (m_ptrYUVImage[ptrSrcLine+3] << 1);
if ((uint)b > 0xFF)
{
b = (~b >> 31) & 0xFF;
}
if ((uint)g > 0xFF)
{
g = (~g >> 31) & 0xFF;
}
if ((uint)r > 0xFF)
{
r = (~r >> 31) & 0xFF;
}
if ((uint) a > 0xFF)
{
a = (~a >> 31) & 0xFF;
}
m_output[ptrDstLine] = (byte)b;
m_output[ptrDstLine+1] = (byte)g;
m_output[ptrDstLine+2] = (byte)r;
m_output[ptrDstLine+3] = (byte)a;
ptrSrcLine += 4;
ptrDstLine += 4;
}
ptrSrcImage += nSrcLineBytes;
ptrDstImage += nDstLineBytes;
}
}
void LossyRestoreGray8 ()
{
int nSrcLineBytes = m_nYUVLineBytes;
int ptrSrcImage = 0; // m_ptrYUVImage
int nDstLineBytes = m_nDstLineBytes;
int ptrDstImage = m_ptrDstBlock;
for (uint y = 0; y < m_nDstHeight; ++y)
{
Buffer.BlockCopy (m_ptrYUVImage, ptrSrcImage, m_output, ptrDstImage, m_nDstWidth);
ptrSrcImage += nSrcLineBytes;
ptrDstImage += nDstLineBytes;
}
}
void LossyRestoreDeltaGray8 ()
{
int nSrcLineBytes = m_nYUVLineBytes;
int ptrSrcImage = 0; // m_ptrYUVImage
int nDstLineBytes = m_nDstLineBytes;
int ptrDstImage = m_ptrDstBlock;
int nWidth = m_nDstWidth;
for (uint y = 0; y < m_nDstHeight; ++y)
{
int ptrSrcLine = ptrSrcImage;
int ptrDstLine = ptrDstImage;
for (int x = 0; x < nWidth; ++x)
{
int g = m_output[ptrDstLine+x] + (m_ptrYUVImage[ptrSrcLine+x] << 1);
if ((uint)g > 0xFF)
{
g = (~g >> 31) & 0xFF;
}
m_output[ptrDstLine+x] = (byte)g;
}
ptrSrcImage += nSrcLineBytes;
ptrDstImage += nDstLineBytes;
}
}
void MoveImageWithVector ()
{
throw new NotImplementedException ("Lossy delta compression not implemented");
}
void ColorOperation0000 ()
{
}
void ColorOperation0101 ()
{
int ptrNext = 0; // m_ptrDecodeBuf;
int nChSamples = m_nBlockArea;
int nRepCount = m_nBlockArea;
do
{
sbyte nBase = m_ptrDecodeBuf[ptrNext];
m_ptrDecodeBuf[ptrNext++ + nChSamples] += nBase;
}
while (0 != --nRepCount);
}
void ColorOperation0110 ()
{
int ptrNext = 0; // m_ptrDecodeBuf;
int nChSamples = m_nBlockArea * 2;
int nRepCount = m_nBlockArea;
do
{
sbyte nBase = m_ptrDecodeBuf[ptrNext];
m_ptrDecodeBuf[ptrNext++ + nChSamples] += nBase;
}
while (0 != --nRepCount);
}
void ColorOperation0111 ()
{
int ptrNext = 0; // m_ptrDecodeBuf;
int nChSamples = m_nBlockArea;
int nRepCount = m_nBlockArea;
do
{
sbyte nBase = m_ptrDecodeBuf[ptrNext];
m_ptrDecodeBuf[ptrNext + nChSamples] += nBase;
m_ptrDecodeBuf[ptrNext + nChSamples * 2] += nBase;
ptrNext ++;
}
while (0 != --nRepCount);
}
void ColorOperation1001 ()
{
int ptrNext = 0; //m_ptrDecodeBuf;
int nChSamples = m_nBlockArea;
int nRepCount = m_nBlockArea;
do
{
sbyte nBase = m_ptrDecodeBuf[ptrNext + nChSamples];
m_ptrDecodeBuf[ptrNext++] += nBase;
}
while (0 != --nRepCount);
}
void ColorOperation1010 ()
{
int ptrNext = 0; // m_ptrDecodeBuf;
int nChSamples = m_nBlockArea;
int nRepCount = m_nBlockArea;
do
{
sbyte nBase = m_ptrDecodeBuf[ptrNext + nChSamples];
m_ptrDecodeBuf[ptrNext++ + nChSamples * 2] += nBase;
}
while (0 != --nRepCount);
}
void ColorOperation1011 ()
{
int ptrNext = 0; //m_ptrDecodeBuf;
int nChSamples = m_nBlockArea;
int nRepCount = m_nBlockArea;
do
{
sbyte nBase = m_ptrDecodeBuf[ptrNext + nChSamples];
m_ptrDecodeBuf[ptrNext] += nBase;
m_ptrDecodeBuf[ptrNext + nChSamples * 2] += nBase;
ptrNext ++;
}
while (0 != --nRepCount);
}
void ColorOperation1101 ()
{
int ptrNext = 0; //m_ptrDecodeBuf;
int nChSamples = m_nBlockArea * 2;
int nRepCount = m_nBlockArea;
do
{
sbyte nBase = m_ptrDecodeBuf[ptrNext + nChSamples];
m_ptrDecodeBuf[ptrNext++] += nBase;
}
while (0 != --nRepCount);
}
void ColorOperation1110 ()
{
int ptrNext = 0; // m_ptrDecodeBuf;
int nChSamples = m_nBlockArea;
int nRepCount = m_nBlockArea;
do
{
sbyte nBase = m_ptrDecodeBuf[ptrNext + nChSamples * 2];
m_ptrDecodeBuf[ptrNext++ + nChSamples] += nBase;
}
while (0 != --nRepCount);
}
void ColorOperation1111 ()
{
int ptrNext = 0; // m_ptrDecodeBuf;
int nChSamples = m_nBlockArea;
int nRepCount = m_nBlockArea;
do
{
sbyte nBase = m_ptrDecodeBuf[ptrNext + nChSamples * 2];
m_ptrDecodeBuf[ptrNext] += nBase;
m_ptrDecodeBuf[ptrNext + nChSamples] += nBase;
ptrNext ++;
}
while (0 != --nRepCount);
}
void ArrangeAndIQuantumize (int ptrSrcData, int ptrCoefficient)
{
int i, j, k;
float rMatrixScale = (float)(512.0 / m_nBlockSize);
var pIQParamPtr = new int[2];
for (i = 0; i < 2; ++i)
{
float rScale = 1.0f;
if (0 != (m_ptrLossyOps[ptrCoefficient+i] & 1))
{
rScale = 1.5f;
}
rScale *= (float)Math.Pow (2.0, (m_ptrLossyOps[ptrCoefficient+i] / 2));
rScale *= rMatrixScale;
int pIQParamTable = i * m_nBlockArea; // m_ptrIQParamTable
pIQParamPtr[i] = pIQParamTable; // m_ptrIQParamBuf
for (j = 0; j < m_nBlockArea; ++j)
{
m_ptrIQParamBuf[pIQParamPtr[i]+j] = (float)(rScale * (m_ptrIQParamTable[pIQParamTable+j] + 1));
}
}
if (CvType.DCT_ERI == m_info.Transformation)
{
m_ptrImageBuf[ptrSrcData+m_nBlockArea] += m_ptrImageBuf[ptrSrcData];
m_ptrImageBuf[ptrSrcData+m_nBlockArea*2] += m_ptrImageBuf[ptrSrcData];
m_ptrImageBuf[ptrSrcData+m_nBlockArea*3] += m_ptrImageBuf[ptrSrcData];
if (EriSampling.YUV_4_4_4 == m_info.SamplingFlags)
{
k = m_nBlockArea * 4;
j = 1;
}
else
{
k = m_nBlockArea * 6;
j = 3;
}
for (i = j; i < m_nChannelCount; ++i)
{
m_ptrImageBuf[ptrSrcData + k + m_nBlockArea] += m_ptrImageBuf[ptrSrcData+k];
m_ptrImageBuf[ptrSrcData + k + m_nBlockArea*2] += m_ptrImageBuf[ptrSrcData+k];
m_ptrImageBuf[ptrSrcData + k + m_nBlockArea*3] += m_ptrImageBuf[ptrSrcData+k];
k += m_nBlockArea * 4;
}
}
var pIQParam = new int[16]; // within m_ptrIQParamBuf
pIQParam[0] = pIQParam[1] = pIQParam[2] = pIQParam[3] = pIQParamPtr[0];
if (EriSampling.YUV_4_4_4 == m_info.SamplingFlags)
{
for (i = 4; i < 12; ++i)
{
pIQParam[i] = pIQParamPtr[1];
}
for (i = 12; i < m_nBlocksetCount; ++i)
{
pIQParam[i] = pIQParamPtr[0];
}
}
else
{
pIQParam[4] = pIQParam[5] = pIQParamPtr[1];
for (i = 6; i < m_nBlocksetCount; ++i)
{
pIQParam[i] = pIQParamPtr[0];
}
}
int pArrange = m_pArrangeTable[0];
for (i = 0; i < m_nBlocksetCount; ++i)
{
float[] ptrDst = m_ptrBlocksetBuf[i];
Erisa.ConvertArraySByteToFloat (m_ptrMatrixBuf, m_ptrImageBuf, ptrSrcData, m_nBlockArea);
ptrSrcData += m_nBlockArea;
Erisa.VectorMultiply (m_ptrMatrixBuf, m_ptrIQParamBuf, pIQParam[i], m_nBlockArea);
for (j = 0; j < m_nBlockArea; ++j)
{
ptrDst[m_ptrTable[pArrange + j]] = m_ptrMatrixBuf[j];
}
}
}
void MatrixIDCT8x8 (float[] matrix, int index)
{
for (int i = 0; i < m_nBlocksetCount; i ++ )
{
Erisa.FastIDCT8x8 (m_ptrBlocksetBuf[i]);
}
}
void MatrixILOT8x8 (float[] matrix, int ptrVertBufLOT)
{
int i, j, k, l = 0;
int ptrHorzBufLOT = 0; // m_ptrHorzBufLOT;
for (i = 0; i < 2; ++i)
{
for (j = 0; j < 2; ++j)
{
Erisa.FastILOT8x8 (m_ptrBlocksetBuf[l], m_ptrHorzBufLOT, ptrHorzBufLOT, matrix, ptrVertBufLOT + j * m_nBlockArea);
++l;
}
ptrHorzBufLOT += m_nBlockArea;
}
ptrVertBufLOT += m_nBlockArea * 2;
if (m_nChannelCount < 3)
return;
if (EriSampling.YUV_4_4_4 == m_info.SamplingFlags)
{
for (k = 0; k < 2; k++)
{
for (i = 0; i < 2; i++)
{
for (j = 0; j < 2; j++)
{
Erisa.FastILOT8x8 (m_ptrBlocksetBuf[l], m_ptrHorzBufLOT, ptrHorzBufLOT, matrix, ptrVertBufLOT + j * m_nBlockArea );
l++;
}
ptrHorzBufLOT += m_nBlockArea;
}
ptrVertBufLOT += m_nBlockArea * 2;
}
}
else if (EriSampling.YUV_4_1_1 == m_info.SamplingFlags)
{
for (k = 0; k < 2; k++)
{
Erisa.FastILOT8x8 (m_ptrBlocksetBuf[l], m_ptrHorzBufLOT, ptrHorzBufLOT, matrix, ptrVertBufLOT);
l++;
ptrHorzBufLOT += m_nBlockArea;
ptrVertBufLOT += m_nBlockArea;
}
}
else
return;
if (m_nChannelCount < 4)
return;
for (i = 0; i < 2; i++)
{
for (j = 0; j < 2; j++)
{
Erisa.FastILOT8x8 (m_ptrBlocksetBuf[l], m_ptrHorzBufLOT, ptrHorzBufLOT, matrix, ptrVertBufLOT + j * m_nBlockArea);
l++;
}
ptrHorzBufLOT += m_nBlockArea;
}
ptrVertBufLOT += m_nBlockArea * 2;
}
void BlockScaling444 (int x, int y)
{
int nBlockOffset = m_info.Transformation == CvType.LOT_ERI ? 1 : 0;
for (int i = 0; i < 2; i++)
{
int yPos = y * 2 + i - nBlockOffset;
if (yPos < 0)
{
continue;
}
for (int j = 0; j < 2; j++)
{
int xPos = x * 2 + j - nBlockOffset;
if (xPos < 0)
continue;
int k = i * 2 + j;
if (null != m_src_frame)
{
Erisa.ConvertArrayFloatToSByte (m_ptrDecodeBuf, m_ptrBlocksetBuf[k], m_nBlockArea);
}
else
{
Erisa.ConvertArrayFloatToByte (m_ptrDecodeBuf, m_ptrBlocksetBuf[k], m_nBlockArea);
}
StoreYUVImageChannel (xPos, yPos, 0);
if (m_nChannelCount < 3)
{
continue;
}
Erisa.ConvertArrayFloatToSByte (m_ptrDecodeBuf, m_ptrBlocksetBuf[k + 4], m_nBlockArea );
StoreYUVImageChannel (xPos, yPos, 1);
Erisa.ConvertArrayFloatToSByte (m_ptrDecodeBuf, m_ptrBlocksetBuf[k + 8], m_nBlockArea);
StoreYUVImageChannel (xPos, yPos, 2);
if (m_nChannelCount < 4)
continue;
if (null != m_src_frame)
{
Erisa.ConvertArrayFloatToSByte (m_ptrDecodeBuf, m_ptrBlocksetBuf[k + 12], m_nBlockArea);
}
else
{
Erisa.ConvertArrayFloatToByte (m_ptrDecodeBuf, m_ptrBlocksetBuf[k + 12], m_nBlockArea);
}
StoreYUVImageChannel (xPos, yPos, 3);
}
}
}
void BlockScaling411 (int x, int y)
{
int nBlockOffset = m_info.Transformation == CvType.LOT_ERI ? 1 : 0;
for (int i = 0; i < 2; i++)
{
int yPos = y * 2 + i - nBlockOffset * 2;
if (yPos < 0)
continue;
for (int j = 0; j < 2; j++)
{
int xPos = x * 2 + j - nBlockOffset * 2;
if (xPos < 0)
continue;
int k = i * 2 + j;
if (null != m_src_frame)
{
Erisa.ConvertArrayFloatToSByte (m_ptrDecodeBuf, m_ptrBlocksetBuf[k], m_nBlockArea );
}
else
{
Erisa.ConvertArrayFloatToByte (m_ptrDecodeBuf, m_ptrBlocksetBuf[k], m_nBlockArea );
}
StoreYUVImageChannel (xPos, yPos, 0);
if (m_nChannelCount < 4)
continue;
if (null != m_src_frame)
{
Erisa.ConvertArrayFloatToSByte (m_ptrDecodeBuf, m_ptrBlocksetBuf[k + 6], m_nBlockArea);
}
else
{
Erisa.ConvertArrayFloatToByte (m_ptrDecodeBuf, m_ptrBlocksetBuf[k + 6], m_nBlockArea);
}
StoreYUVImageChannel (xPos, yPos, 3);
}
}
if (m_nChannelCount < 3)
return;
y -= nBlockOffset;
x -= nBlockOffset;
if (y < 0 || x < 0)
return;
Erisa.ConvertArrayFloatToSByte (m_ptrDecodeBuf, m_ptrBlocksetBuf[4], m_nBlockArea);
StoreYUVImageChannelX2 (x, y, 1);
Erisa.ConvertArrayFloatToSByte (m_ptrDecodeBuf, m_ptrBlocksetBuf[5], m_nBlockArea);
StoreYUVImageChannelX2 (x, y, 2);
}
void ConvertImageYUVtoRGB (bool differential = false)
{
if (m_nChannelCount < 3)
return;
int nPixelBytes = m_nYUVPixelBytes;
int nWidth = m_nDstWidth;
int nHeight = m_nDstHeight;
int ptrYUVLine = 0; // m_ptrYUVImage
for (uint y = 0; y < nHeight; ++y)
{
int ptrYUVPixel = ptrYUVLine;
if (differential)
{
for (uint x = 0; x < nWidth; ++x)
{
int Cy = m_ptrYUVImage[ptrYUVPixel];
int u = m_ptrYUVImage[ptrYUVPixel+1];
int v = m_ptrYUVImage[ptrYUVPixel+2];
int b = Cy + ((u * 7) >> 2) + 0x80;
int g = Cy - ((u * 3 + v * 6) >> 3) + 0x80;
int r = Cy + ((v * 3) >> 1) + 0x80;
if ((uint)b > 0xFF)
{
b = (~b >> 31) & 0xFF;
}
m_ptrYUVImage[ptrYUVPixel] = (sbyte)(b - 0x80);
if ((uint)g > 0xFF)
{
g = (~g >> 31) & 0xFF;
}
m_ptrYUVImage[ptrYUVPixel+1] = (sbyte)(g - 0x80);
if ((uint)r > 0xFF)
{
r = (~r >> 31) & 0xFF;
}
m_ptrYUVImage[ptrYUVPixel+2] = (sbyte)(r - 0x80);
ptrYUVPixel += nPixelBytes;
}
}
else
{
for (uint x = 0; x < nWidth; ++x)
{
int Cy = (byte)m_ptrYUVImage[ptrYUVPixel];
int u = m_ptrYUVImage[ptrYUVPixel+1];
int v = m_ptrYUVImage[ptrYUVPixel+2];
int b = Cy + ((u * 7) >> 2);
int g = Cy - ((u * 3 + v * 6) >> 3);
int r = Cy + ((v * 3) >> 1);
if ((uint)b > 0xFF)
{
b = (~b >> 31) & 0xFF;
}
m_ptrYUVImage[ptrYUVPixel] = (sbyte)b;
if ((uint)g > 0xFF)
{
g = (~g >> 31) & 0xFF;
}
m_ptrYUVImage[ptrYUVPixel+1] = (sbyte)g;
if ((uint)r > 0xFF)
{
r = (~r >> 31) & 0xFF;
}
m_ptrYUVImage[ptrYUVPixel+2] = (sbyte)r;
ptrYUVPixel += nPixelBytes;
}
}
ptrYUVLine += m_nYUVLineBytes;
}
}
void StoreYUVImageChannel (int xBlock, int yBlock, int iChannel)
{
int nPixelBytes = m_nYUVPixelBytes;
int nBlockSize = m_nBlockSize;
int nBlockArea = m_nBlockArea;
int ptrDstYUV = (yBlock * nBlockSize * m_nYUVLineBytes)
+ (xBlock * nBlockSize * nPixelBytes) + iChannel;
int ptrSrcYUV = 0; // m_ptrDecodeBuf;
for (int y = 0; y < nBlockSize; y++)
{
int ptrDstLine = ptrDstYUV;
for (int x = 0; x < nBlockSize; x++)
{
m_ptrYUVImage[ptrDstLine] = m_ptrDecodeBuf[ptrSrcYUV++];
ptrDstLine += nPixelBytes;
}
ptrDstYUV += m_nYUVLineBytes;
}
}
void StoreYUVImageChannelX2 (int xBlock, int yBlock, int iChannel)
{
int nPixelBytes = m_nYUVPixelBytes;
int nLineBytes = m_nYUVLineBytes;
int nBlockSize = m_nBlockSize;
int nBlockArea = m_nBlockArea;
int ptrDstYUV = (yBlock * nBlockSize * 2 * nLineBytes)
+ (xBlock * nBlockSize * 2 * nPixelBytes) + iChannel;
int ptrSrcYUV = 0; // m_ptrDecodeBuf;
for (int y = 0; y < nBlockSize; y++)
{
int ptrDstLine = ptrDstYUV;
for (int x = 0; x < nBlockSize; x++)
{
sbyte d = m_ptrDecodeBuf[ptrSrcYUV++];
m_ptrYUVImage[ptrDstLine + nLineBytes + nPixelBytes] = d;
m_ptrYUVImage[ptrDstLine + nLineBytes] = d;
m_ptrYUVImage[ptrDstLine + nPixelBytes] = d;
m_ptrYUVImage[ptrDstLine] = d;
ptrDstLine += nPixelBytes * 2;
}
ptrDstYUV += nLineBytes * 2;
}
}
}
internal static class Erina
{
public const int CodeFlag = int.MinValue;
public const int HuffmanEscape = 0x7FFFFFFF;
public const int HuffmanNull = 0x8000;
public const int HuffmanMax = 0x4000;
public const int HuffmanRoot = 0x200;
}
internal class HuffmanNode
{
public ushort Weight;
public ushort Parent;
public int ChildCode;
public void CopyFrom (HuffmanNode other)
{
this.Weight = other.Weight;
this.Parent = other.Parent;
this.ChildCode = other.ChildCode;
}
}
internal class HuffmanTree
{
public HuffmanNode[] m_hnTree = new HuffmanNode[0x201];
public int[] m_iSymLookup = new int[0x100];
public int m_iEscape;
public int m_iTreePointer;
public HuffmanTree ()
{
Initialize();
}
public void Initialize ()
{
for (int i = 0; i < 0x201; i++)
{
m_hnTree[i] = new HuffmanNode();
}
for (int i = 0; i < 0x100; i++)
{
m_iSymLookup[i] = Erina.HuffmanNull;
}
m_iEscape = Erina.HuffmanNull;
m_iTreePointer = Erina.HuffmanRoot;
m_hnTree[Erina.HuffmanRoot].Weight = 0;
m_hnTree[Erina.HuffmanRoot].Parent = Erina.HuffmanNull;
m_hnTree[Erina.HuffmanRoot].ChildCode = Erina.HuffmanNull;
}
public void IncreaseOccuredCount (int iEntry)
{
m_hnTree[iEntry].Weight++;
Normalize (iEntry);
if (m_hnTree[Erina.HuffmanRoot].Weight >= Erina.HuffmanMax)
{
HalfAndRebuild();
}
}
private void RecountOccuredCount (int iParent)
{
int iChild = m_hnTree[iParent].ChildCode;
m_hnTree[iParent].Weight = (ushort)(m_hnTree[iChild].Weight + m_hnTree[iChild + 1].Weight);
}
private void Normalize (int iEntry)
{
while (iEntry < Erina.HuffmanRoot)
{
int iSwap = iEntry + 1;
ushort weight = m_hnTree[iEntry].Weight;
while (iSwap < Erina.HuffmanRoot)
{
if (m_hnTree[iSwap].Weight >= weight)
break;
++iSwap;
}
if (iEntry == --iSwap)
{
iEntry = m_hnTree[iEntry].Parent;
RecountOccuredCount (iEntry);
continue;
}
int iChild, nCode;
if (0 == (m_hnTree[iEntry].ChildCode & Erina.CodeFlag))
{
iChild = m_hnTree[iEntry].ChildCode;
m_hnTree[iChild].Parent = (ushort)iSwap;
m_hnTree[iChild + 1].Parent = (ushort)iSwap;
}
else
{
nCode = m_hnTree[iEntry].ChildCode & ~Erina.CodeFlag;
if (nCode != Erina.HuffmanEscape)
m_iSymLookup[nCode & 0xFF] = iSwap;
else
m_iEscape = iSwap;
}
if (0 == (m_hnTree[iSwap].ChildCode & Erina.CodeFlag))
{
iChild = m_hnTree[iSwap].ChildCode;
m_hnTree[iChild].Parent = (ushort)iEntry;
m_hnTree[iChild+1].Parent = (ushort)iEntry;
}
else
{
nCode = m_hnTree[iSwap].ChildCode & ~Erina.CodeFlag;
if (nCode != Erina.HuffmanEscape)
m_iSymLookup[nCode & 0xFF] = iEntry;
else
m_iEscape = iEntry;
}
var node = m_hnTree[iSwap]; // XXX
ushort iEntryParent = m_hnTree[iEntry].Parent;
ushort iSwapParent = m_hnTree[iSwap].Parent;
m_hnTree[iSwap] = m_hnTree[iEntry];
m_hnTree[iEntry] = node;
m_hnTree[iSwap].Parent = iSwapParent;
m_hnTree[iEntry].Parent = iEntryParent;
RecountOccuredCount (iSwapParent);
iEntry = iSwapParent;
}
}
public void AddNewEntry (int nNewCode)
{
if (m_iTreePointer > 0)
{
m_iTreePointer -= 2;
int i = m_iTreePointer;
var phnNew = m_hnTree[i];
phnNew.Weight = 1;
phnNew.ChildCode = Erina.CodeFlag | nNewCode;
m_iSymLookup[nNewCode & 0xFF] = i;
var phnRoot = m_hnTree[Erina.HuffmanRoot];
if (phnRoot.ChildCode != Erina.HuffmanNull)
{
var phnParent = m_hnTree[i + 2];
var phnChild = m_hnTree[i + 1];
phnChild.CopyFrom (phnParent); // m_hnTree[i + 1] = m_hnTree[i + 2];
if (0 != (phnChild.ChildCode & Erina.CodeFlag))
{
int nCode = phnChild.ChildCode & ~Erina.CodeFlag;
if (nCode != Erina.HuffmanEscape)
m_iSymLookup[nCode & 0xFF] = i + 1;
else
m_iEscape = i + 1;
}
phnParent.Weight = (ushort)(phnNew.Weight + phnChild.Weight);
phnParent.Parent = phnChild.Parent;
phnParent.ChildCode = i;
phnNew.Parent = phnChild.Parent = (ushort)(i + 2);
Normalize (i + 2);
}
else
{
phnNew.Parent = Erina.HuffmanRoot;
m_iEscape = i + 1;
var phnEscape = m_hnTree[m_iEscape];
phnEscape.Weight = 1;
phnEscape.Parent = Erina.HuffmanRoot;
phnEscape.ChildCode = Erina.CodeFlag | Erina.HuffmanEscape;
phnRoot.Weight = 2;
phnRoot.ChildCode = i;
}
}
else
{
int i = m_iTreePointer;
var phnEntry = m_hnTree[i];
if (phnEntry.ChildCode == (Erina.CodeFlag | Erina.HuffmanEscape))
{
phnEntry = m_hnTree[i + 1];
}
phnEntry.ChildCode = Erina.CodeFlag | nNewCode;
}
}
private void HalfAndRebuild ()
{
int i;
int iNextEntry = Erina.HuffmanRoot;
for (i = Erina.HuffmanRoot - 1; i >= m_iTreePointer; i--)
{
if (0 != (m_hnTree[i].ChildCode & Erina.CodeFlag))
{
m_hnTree[i].Weight = (ushort)((m_hnTree[i].Weight + 1) >> 1);
m_hnTree[iNextEntry--].CopyFrom (m_hnTree[i]);
}
}
++iNextEntry;
int iChild, nCode;
i = m_iTreePointer;
for (;;)
{
m_hnTree[i].CopyFrom (m_hnTree[iNextEntry]);
m_hnTree[i + 1].CopyFrom (m_hnTree[iNextEntry + 1]);
iNextEntry += 2;
var phnChild1 = m_hnTree[i];
var phnChild2 = m_hnTree[i + 1];
if (0 == (phnChild1.ChildCode & Erina.CodeFlag))
{
iChild = phnChild1.ChildCode;
m_hnTree[iChild].Parent = (ushort)i;
m_hnTree[iChild + 1].Parent = (ushort)i;
}
else
{
nCode = phnChild1.ChildCode & ~Erina.CodeFlag;
if (Erina.HuffmanEscape == nCode)
m_iEscape = i;
else
m_iSymLookup[nCode & 0xFF] = i;
}
if (0 == (phnChild2.ChildCode & Erina.CodeFlag))
{
iChild = phnChild2.ChildCode;
m_hnTree[iChild].Parent = (ushort)(i + 1);
m_hnTree[iChild + 1].Parent = (ushort)(i + 1);
}
else
{
nCode = phnChild2.ChildCode & ~Erina.CodeFlag;
if (Erina.HuffmanEscape == nCode)
m_iEscape = i + 1;
else
m_iSymLookup[nCode & 0xFF] = i + 1;
}
ushort weight = (ushort)(phnChild1.Weight + phnChild2.Weight);
if (iNextEntry <= Erina.HuffmanRoot)
{
int j = iNextEntry;
for (;;)
{
if (weight <= m_hnTree[j].Weight)
{
m_hnTree[j - 1].Weight = weight;
m_hnTree[j - 1].ChildCode = i;
break;
}
m_hnTree[j - 1].CopyFrom (m_hnTree[j]);
if (++j > Erina.HuffmanRoot)
{
m_hnTree[Erina.HuffmanRoot].Weight = weight;
m_hnTree[Erina.HuffmanRoot].ChildCode = i;
break;
}
}
--iNextEntry;
}
else
{
m_hnTree[Erina.HuffmanRoot].Weight = weight;
m_hnTree[Erina.HuffmanRoot].Parent = Erina.HuffmanNull;
m_hnTree[Erina.HuffmanRoot].ChildCode = i;
phnChild1.Parent = Erina.HuffmanRoot;
phnChild2.Parent = Erina.HuffmanRoot;
break;
}
i += 2;
}
}
}
internal class RLEDecodeContext : ERISADecodeContext
{
protected int m_flgZero;
protected uint m_nLength;
public RLEDecodeContext (uint nBufferingSize) : base (nBufferingSize)
{
}
public void InitGammaContext ()
{
m_flgZero = GetABit();
m_nLength = 0;
}
public override uint DecodeBytes (Array ptrDst, uint nCount)
{
return DecodeGammaCodeBytes (ptrDst as sbyte[], nCount);
}
public uint DecodeGammaCodeBytes (sbyte[] ptrDst, uint nCount)
{
int dst = 0;
uint nDecoded = 0;
if (m_nLength == 0)
{
m_nLength = (uint)GetGammaCode();
if (0 == m_nLength)
{
return nDecoded;
}
}
for (;;)
{
uint nRepeat = Math.Min (m_nLength, nCount);
Debug.Assert (nRepeat > 0);
m_nLength -= nRepeat;
nCount -= nRepeat;
if (0 == m_flgZero)
{
nDecoded += nRepeat;
do
{
ptrDst[dst++] = 0;
}
while (0 != --nRepeat);
}
else
{
do
{
sbyte nSign = (sbyte)GetABit();
sbyte nCode = (sbyte)GetGammaCode();
if (0 == nCode)
{
return nDecoded;
}
nDecoded ++;
ptrDst[dst++] = (sbyte)((nCode ^ nSign) - nSign);
}
while (0 != --nRepeat);
}
if (0 == nCount)
{
if (0 == m_nLength)
{
m_flgZero = ~m_flgZero;
}
return nDecoded;
}
m_flgZero = ~m_flgZero;
m_nLength = (uint) GetGammaCode();
if (0 == m_nLength)
{
return nDecoded;
}
}
}
protected int GetGammaCode()
{
if (!PrefetchBuffer())
{
return 0;
}
m_nIntBufCount--;
uint dwIntBuf = m_dwIntBuffer;
m_dwIntBuffer <<= 1;
if (0 == (dwIntBuf & 0x80000000))
{
return 1;
}
if (!PrefetchBuffer())
{
return 0;
}
int nCode = 0;
if ((0 != (~m_dwIntBuffer & 0x55000000)) && (m_nIntBufCount >= 8))
{
uint i = (m_dwIntBuffer >> 24) << 1;
nCode = nGammaCodeLookup[i];
int nBitCount = nGammaCodeLookup[i + 1];
Debug.Assert (nBitCount <= m_nIntBufCount);
Debug.Assert (nCode > 0);
m_nIntBufCount -= nBitCount;
m_dwIntBuffer <<= nBitCount;
return nCode;
}
int nBase = 2;
for (;;)
{
if (m_nIntBufCount >= 2)
{
dwIntBuf = m_dwIntBuffer;
m_dwIntBuffer <<= 2;
nCode = (int)(((uint)nCode << 1) | (dwIntBuf >> 31));
m_nIntBufCount -= 2;
if (0 == (dwIntBuf & 0x40000000))
{
return nCode + nBase;
}
nBase <<= 1;
}
else
{
if (!PrefetchBuffer())
{
return 0;
}
nCode = (int)(((uint)nCode << 1) | (m_dwIntBuffer >> 31));
m_nIntBufCount --;
m_dwIntBuffer <<= 1;
if (!PrefetchBuffer())
{
return 0;
}
dwIntBuf = m_dwIntBuffer;
m_nIntBufCount --;
m_dwIntBuffer <<= 1;
if (0 == (dwIntBuf & 0x80000000))
{
return nCode + nBase;
}
nBase <<= 1;
}
}
}
static readonly byte[] nGammaCodeLookup = new byte[0x200]
{
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
8, 6, 8, 6, 8, 6, 8, 6, 16, 8, 0xff, 0xff, 17, 8, 0xff, 0xff,
9, 6, 9, 6, 9, 6, 9, 6, 18, 8, 0xff, 0xff, 19, 8, 0xff, 0xff,
5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4,
5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4,
10, 6, 10, 6, 10, 6, 10, 6, 20, 8, 0xff, 0xff, 21, 8, 0xff, 0xff,
11, 6, 11, 6, 11, 6, 11, 6, 22, 8, 0xff, 0xff, 23, 8, 0xff, 0xff,
3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2,
3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2,
3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2,
3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2,
3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2,
3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2,
3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2,
3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2,
6, 4, 6, 4, 6, 4, 6, 4, 6, 4, 6, 4, 6, 4, 6, 4,
6, 4, 6, 4, 6, 4, 6, 4, 6, 4, 6, 4, 6, 4, 6, 4,
12, 6, 12, 6, 12, 6, 12, 6, 24, 8, 0xff, 0xff, 25, 8, 0xff, 0xff,
13, 6, 13, 6, 13, 6, 13, 6, 26, 8, 0xff, 0xff, 27, 8, 0xff, 0xff,
7, 4, 7, 4, 7, 4, 7, 4, 7, 4, 7, 4, 7, 4, 7, 4,
7, 4, 7, 4, 7, 4, 7, 4, 7, 4, 7, 4, 7, 4, 7, 4,
14, 6, 14, 6, 14, 6, 14, 6, 28, 8, 0xff, 0xff, 29, 8, 0xff, 0xff,
15, 6, 15, 6, 15, 6, 15, 6, 30, 8, 0xff, 0xff, 31, 8, 0xff, 0xff
};
}
internal class HuffmanDecodeContext : RLEDecodeContext
{
int m_dwERINAFlags;
HuffmanTree m_pLastHuffmanTree;
HuffmanTree[] m_ppHuffmanTree;
// ERINAEncodingFlag
public const int efERINAOrder0 = 0x0000;
public const int efERINAOrder1 = 0x0001;
public HuffmanDecodeContext (uint nBufferingSize) : base (nBufferingSize)
{
}
public void PrepareToDecodeERINACode (int flags = efERINAOrder1)
{
int i;
if (null == m_ppHuffmanTree)
{
m_ppHuffmanTree = new HuffmanTree[0x101];
}
m_dwERINAFlags = flags;
m_nLength = 0;
if (efERINAOrder0 == flags)
{
m_ppHuffmanTree[0] = new HuffmanTree();
m_ppHuffmanTree[0x100] = new HuffmanTree();
for (i = 1; i < 0x100; i++)
{
m_ppHuffmanTree[i] = m_ppHuffmanTree[0];
}
}
else
{
for (i = 0; i < 0x101; i++)
{
m_ppHuffmanTree[i] = new HuffmanTree();
}
}
m_pLastHuffmanTree = m_ppHuffmanTree[0];
}
public override uint DecodeBytes (Array ptrDst, uint nCount)
{
return DecodeErinaCodeBytes (ptrDst as sbyte[], nCount);
}
public uint DecodeErinaCodeBytes (sbyte[] ptrDst, uint nCount)
{
var tree = m_pLastHuffmanTree;
int symbol, length;
uint i = 0;
if (m_nLength > 0)
{
length = (int)Math.Min (m_nLength, nCount);
m_nLength -= (uint)length;
do
{
ptrDst[i++] = 0;
}
while (0 != --length);
}
while (i < nCount)
{
symbol = GetHuffmanCode (tree);
if (Erina.HuffmanEscape == symbol)
{
break;
}
ptrDst[i++] = (sbyte)symbol;
if (0 == symbol)
{
length = GetLengthHuffman (m_ppHuffmanTree[0x100]);
if (Erina.HuffmanEscape == length)
{
break;
}
if (0 != --length)
{
m_nLength = (uint)length;
if (i + length > nCount)
{
length = (int)(nCount - i);
}
m_nLength -= (uint)length;
while (length > 0)
{
ptrDst[i++] = 0;
--length;
}
}
}
tree = m_ppHuffmanTree[symbol & 0xFF];
}
m_pLastHuffmanTree = tree;
return i;
}
private int GetLengthHuffman (HuffmanTree tree)
{
int nCode;
if (tree.m_iEscape != Erina.HuffmanNull)
{
int iEntry = Erina.HuffmanRoot;
int iChild = tree.m_hnTree[Erina.HuffmanRoot].ChildCode;
do
{
if (!PrefetchBuffer())
{
return Erina.HuffmanEscape;
}
iEntry = iChild + (int)(m_dwIntBuffer >> 31);
iChild = tree.m_hnTree[iEntry].ChildCode;
m_dwIntBuffer <<= 1;
--m_nIntBufCount;
}
while (0 == (iChild & Erina.CodeFlag));
if ((m_dwERINAFlags != efERINAOrder0) ||
(tree.m_hnTree[Erina.HuffmanRoot].Weight < Erina.HuffmanMax-1))
{
tree.IncreaseOccuredCount (iEntry);
}
nCode = iChild & ~Erina.CodeFlag;
if (nCode != Erina.HuffmanEscape)
{
return nCode;
}
}
nCode = GetGammaCode();
if (-1 == nCode)
{
return Erina.HuffmanEscape;
}
tree.AddNewEntry (nCode);
return nCode;
}
public int GetHuffmanCode (HuffmanTree tree)
{
int nCode;
if (tree.m_iEscape != Erina.HuffmanNull)
{
int iEntry = Erina.HuffmanRoot;
int iChild = tree.m_hnTree[Erina.HuffmanRoot].ChildCode;
do
{
if (!PrefetchBuffer())
{
return Erina.HuffmanEscape;
}
iEntry = iChild + (int)(m_dwIntBuffer >> 31);
iChild = tree.m_hnTree[iEntry].ChildCode;
m_dwIntBuffer <<= 1;
--m_nIntBufCount;
}
while (0 == (iChild & Erina.CodeFlag));
if ((m_dwERINAFlags != efERINAOrder0) ||
(tree.m_hnTree[Erina.HuffmanRoot].Weight < Erina.HuffmanMax-1))
{
tree.IncreaseOccuredCount (iEntry);
}
nCode = iChild & ~Erina.CodeFlag;
if (nCode != Erina.HuffmanEscape)
{
return nCode;
}
}
nCode = (int)GetNBits (8);
tree.AddNewEntry (nCode);
return nCode;
}
}
internal class ProbDecodeContext : RLEDecodeContext
{
protected uint m_dwCodeRegister;
protected uint m_dwAugendRegister;
protected int m_nPostBitCount;
protected ErisaProbModel m_pPhraseLenProb = new ErisaProbModel();
protected ErisaProbModel m_pPhraseIndexProb = new ErisaProbModel();
protected ErisaProbModel m_pRunLenProb = new ErisaProbModel();
protected ErisaProbModel m_pLastERISAProb;
protected ErisaProbModel[] m_ppTableERISA;
public ProbDecodeContext (uint nBufferingSize) : base (nBufferingSize)
{
}
public void PrepareToDecodeERISACode ()
{
if (null == m_ppTableERISA)
{
m_ppTableERISA = new ErisaProbModel[0x101];
for (int i = 0; i < 0x101; ++i)
{
m_ppTableERISA[i] = new ErisaProbModel();
m_ppTableERISA[i].Initialize();
}
}
m_pLastERISAProb = m_ppTableERISA[0];
m_pPhraseLenProb.Initialize();
m_pPhraseIndexProb.Initialize();
m_pRunLenProb.Initialize();
InitializeERISACode();
}
public override uint DecodeBytes (Array ptrDst, uint nCount)
{
return DecodeERISACodeBytes (ptrDst as sbyte[], nCount);
}
uint DecodeERISACodeBytes (sbyte[] ptrDst, uint nCount)
{
var pProb = m_pLastERISAProb;
int nSymbol, iSym;
uint i = 0;
while (i < nCount)
{
if (m_nLength > 0)
{
uint nCurrent = nCount - i;
if (nCurrent > m_nLength)
nCurrent = m_nLength;
m_nLength -= nCurrent;
for (uint j = 0; j < nCurrent; j++)
{
ptrDst[i++] = 0;
}
continue;
}
iSym = DecodeERISACodeIndex (pProb);
if (iSym < 0)
break;
nSymbol = pProb.SymTable[iSym].Symbol;
pProb.IncreaseSymbol (iSym);
ptrDst[i++] = (sbyte)nSymbol;
if (0 == nSymbol)
{
iSym = DecodeERISACodeIndex (m_pRunLenProb);
if (iSym < 0)
break;
m_nLength = (uint)m_pRunLenProb.SymTable[iSym].Symbol;
m_pRunLenProb.IncreaseSymbol (iSym);
}
pProb = m_ppTableERISA[nSymbol & 0xFF];
}
m_pLastERISAProb = pProb;
return i;
}
void InitializeERISACode ()
{
m_nLength = 0;
m_dwCodeRegister = GetNBits (32);
m_dwAugendRegister = 0xFFFF;
m_nPostBitCount = 0;
}
public int DecodeERISACode (ErisaProbModel pModel)
{
int iSym = DecodeERISACodeIndex (pModel);
int nSymbol = ErisaProbModel.EscCode;
if (iSym >= 0)
{
nSymbol = pModel.SymTable[iSym].Symbol;
pModel.IncreaseSymbol (iSym);
}
return nSymbol;
}
protected int DecodeERISACodeIndex (ErisaProbModel pModel)
{
uint dwAcc = m_dwCodeRegister * pModel.TotalCount / m_dwAugendRegister;
if (dwAcc >= ErisaProbModel.TotalLimit)
{
return -1;
}
int iSym = 0;
ushort wAcc = (ushort)dwAcc;
ushort wFs = 0;
ushort wOccured;
for (;;)
{
wOccured = pModel.SymTable[iSym].Occured;
if (wAcc < wOccured)
break;
wAcc -= wOccured;
wFs += wOccured;
if (++iSym >= pModel.SymbolSorts)
return -1;
}
m_dwCodeRegister -= (m_dwAugendRegister * wFs + pModel.TotalCount - 1) / pModel.TotalCount;
m_dwAugendRegister = m_dwAugendRegister * wOccured / pModel.TotalCount;
Debug.Assert (m_dwAugendRegister != 0);
while (0 == (m_dwAugendRegister & 0x8000))
{
int nNextBit = GetABit();
if (1 == nNextBit)
{
if ((++m_nPostBitCount) >= 256)
return -1;
nNextBit = 0;
}
m_dwCodeRegister = (m_dwCodeRegister << 1) | ((uint)nNextBit & 1);
m_dwAugendRegister <<= 1;
}
m_dwCodeRegister &= 0xFFFF;
return iSym;
}
}
internal class ErisaProbModel
{
public const int TotalLimit = 0x2000;
public const int SymbolSortMax = 0x101;
public const int SubSortMax = 0x80;
public const int ProbSlotMax = 0x800;
public const short EscCode = -1;
internal struct CodeSymbol
{
public ushort Occured;
public short Symbol;
}
public uint TotalCount;
public int SymbolSorts;
public CodeSymbol[] SymTable = new CodeSymbol[SymbolSortMax];
public CodeSymbol[] SubModel = new CodeSymbol[SubSortMax];
public void Initialize ()
{
TotalCount = SymbolSortMax;
SymbolSorts = SymbolSortMax;
for (short i = 0; i < 0x100; ++i)
{
SymTable[i].Occured = 1;
SymTable[i].Symbol = i;
}
SymTable[0x100].Occured = 1;
SymTable[0x100].Symbol = EscCode;
for (short i = 0; i < SubSortMax; ++i)
{
SubModel[i].Occured = 0;
SubModel[i].Symbol = -1;
}
}
public int AccumulateProb (short wSymbol)
{
int index = FindSymbol (wSymbol);
Debug.Assert (index >= 0);
int occured = SymTable[index].Occured;
int i = 0;
while (occured < TotalCount)
{
occured <<= 1;
i++;
}
return i;
}
public void HalfOccuredCount ()
{
TotalCount = 0;
for (int i = 0; i < SymbolSorts; ++i)
{
TotalCount += SymTable[i].Occured = (ushort)((SymTable[i].Occured + 1) >> 1);
}
for (int i = 0; i < SubSortMax; ++i)
{
SubModel[i].Occured >>= 1;
}
}
public int IncreaseSymbol (int index)
{
ushort occured = ++SymTable[index].Occured;
short symbol = SymTable[index].Symbol;
while (--index >= 0)
{
if (SymTable[index].Occured >= occured)
break;
SymTable[index + 1] = SymTable[index];
}
SymTable[++index].Occured = occured;
SymTable[index].Symbol = symbol;
if (++TotalCount >= TotalLimit)
{
HalfOccuredCount();
}
return index;
}
public int FindSymbol (short symbol)
{
for (int index = 0; index < SymbolSorts; ++index)
{
if (SymTable[index].Symbol == symbol)
return index;
}
return -1;
}
public int AddSymbol (short symbol)
{
int index = SymbolSorts++;
TotalCount++;
SymTable[index].Symbol = symbol;
SymTable[index].Occured = 1;
return index;
}
}
}