807 lines
29 KiB
C#

//! \file ImageBGI.cs
//! \date Fri Apr 03 01:39:41 2015
//! \brief BGI/Ethornell engine image format.
//
// Copyright (C) 2015 by morkt
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//
using System;
using System.ComponentModel.Composition;
using System.IO;
using System.Windows.Media;
using GameRes.Utility;
using System.Collections.Generic;
using System.Threading;
using System.Threading.Tasks;
namespace GameRes.Formats.BGI
{
[Export(typeof(ImageFormat))]
public class BgiFormat : ImageFormat
{
public override string Tag { get { return "BGI"; } }
public override string Description { get { return "BGI/Ethornell image format"; } }
public override uint Signature { get { return 0; } }
public BgiFormat ()
{
Extensions = new string[] { "", "bgi" };
}
public override void Write (Stream file, ImageData image)
{
throw new System.NotImplementedException ("BgiFormat.Write not implemented");
}
public override ImageMetaData ReadMetaData (Stream stream)
{
using (var input = new ArcView.Reader (stream))
{
int width = input.ReadInt16();
int height = input.ReadInt16();
if (width <= 0 || height <= 0)
return null;
int bpp = input.ReadInt32();
if (24 != bpp && 32 != bpp && 8 != bpp)
return null;
if (0 != input.ReadInt64())
return null;
return new ImageMetaData
{
Width = (uint)width,
Height = (uint)height,
BPP = bpp,
};
}
}
public override ImageData Read (Stream stream, ImageMetaData info)
{
PixelFormat format;
if (24 == info.BPP)
format = PixelFormats.Bgr24;
else if (32 == info.BPP)
format = PixelFormats.Bgra32;
else
format = PixelFormats.Gray8;
int stride = (int)info.Width*((info.BPP+7)/8);
var pixels = new byte[stride*info.Height];
stream.Position = 0x10;
int read = stream.Read (pixels, 0, pixels.Length);
if (read != pixels.Length)
throw new InvalidFormatException();
return ImageData.Create (info, format, null, pixels, stride);
}
}
internal class CbgMetaData : ImageMetaData
{
public int IntermediateLength;
public uint Key;
public int EncLength;
public byte CheckSum;
public byte CheckXor;
public int Version;
}
[Export(typeof(ImageFormat))]
public class CompressedBGFormat : ImageFormat
{
public override string Tag { get { return "CompressedBG"; } }
public override string Description { get { return "BGI/Ethornell compressed image format"; } }
public override uint Signature { get { return 0x706D6F43; } }
public CompressedBGFormat ()
{
Extensions = new string[] { "", "bgi" };
}
public override void Write (Stream file, ImageData image)
{
throw new System.NotImplementedException ("BgiFormat.Write not implemented");
}
public override ImageMetaData ReadMetaData (Stream stream)
{
var header = new byte[0x30];
if (header.Length != stream.Read (header, 0, header.Length))
return null;
if (!Binary.AsciiEqual (header, "CompressedBG___"))
return null;
return new CbgMetaData
{
Width = LittleEndian.ToUInt16 (header, 0x10),
Height = LittleEndian.ToUInt16 (header, 0x12),
BPP = LittleEndian.ToInt32 (header, 0x14),
IntermediateLength = LittleEndian.ToInt32 (header, 0x20),
Key = LittleEndian.ToUInt32 (header, 0x24),
EncLength = LittleEndian.ToInt32 (header, 0x28),
CheckSum = header[0x2C],
CheckXor = header[0x2D],
Version = LittleEndian.ToUInt16 (header, 0x2E),
};
}
public override ImageData Read (Stream stream, ImageMetaData info)
{
var meta = info as CbgMetaData;
if (null == meta)
throw new ArgumentException ("CompressedBGFormat.Read should be supplied with CbgMetaData", "info");
using (var reader = new CbgReader (stream, meta))
{
reader.Unpack();
return ImageData.Create (meta, reader.Format, null, reader.Data, reader.Stride);
}
}
}
internal class CbgReader : BgiDecoderBase
{
byte[] m_output;
CbgMetaData m_info;
int m_pixel_size;
public byte[] Data { get { return m_output; } }
public PixelFormat Format { get; private set; }
public int Stride { get; private set; }
public CbgReader (Stream input, CbgMetaData info) : base (input, true)
{
m_info = info;
m_pixel_size = m_info.BPP / 8;
Stride = (int)info.Width * m_pixel_size;
m_key = m_info.Key;
m_magic = 0;
switch (m_info.BPP)
{
case 32: Format = PixelFormats.Bgra32; break;
case 24: Format = PixelFormats.Bgr24; break;
case 8: Format = PixelFormats.Gray8; break;
case 16:
if (2 == m_info.Version)
throw new InvalidFormatException();
Format = PixelFormats.Bgr565;
break;
default: throw new InvalidFormatException();
}
}
public void Unpack ()
{
Input.Position = 0x30;
if (m_info.Version < 2)
UnpackV1();
else if (2 == m_info.Version)
UnpackV2();
else
throw new NotSupportedException ("Not supported CompressedBG version");
}
protected byte[] ReadEncoded ()
{
var data = new byte[m_info.EncLength];
if (data.Length != Input.Read (data, 0, data.Length))
throw new EndOfStreamException();
byte sum = 0;
byte xor = 0;
for (int i = 0; i < data.Length; ++i)
{
data[i] -= UpdateKey();
sum += data[i];
xor ^= data[i];
}
if (sum != m_info.CheckSum || xor != m_info.CheckXor)
throw new InvalidFormatException ("Compressed stream failed checksum check");
return data;
}
static internal int ReadInteger (Stream input)
{
int v = 0;
int code;
int code_length = 0;
do
{
code = input.ReadByte();
if (-1 == code || code_length >= 32)
return -1;
v |= (code & 0x7f) << code_length;
code_length += 7;
}
while (0 != (code & 0x80));
return v;
}
static protected uint[] ReadWeightTable (Stream input, int length)
{
uint[] leaf_nodes_weight = new uint[length];
for (int i = 0; i < length; ++i)
{
int weight = ReadInteger (input);
if (-1 == weight)
throw new InvalidFormatException ("Invalid compressed stream");
leaf_nodes_weight[i] = (uint)weight;
}
return leaf_nodes_weight;
}
void UnpackV1 ()
{
uint[] leaf_nodes_weight;
using (var enc = new MemoryStream (ReadEncoded()))
leaf_nodes_weight = ReadWeightTable (enc, 0x100);
var tree = new HuffmanTree (leaf_nodes_weight);
byte[] packed = new byte[m_info.IntermediateLength];
HuffmanDecompress (tree, packed);
m_output = new byte[Stride * (int)m_info.Height];
UnpackZeros (packed);
ReverseAverageSampling();
}
void HuffmanDecompress (HuffmanTree tree, byte[] output)
{
for (int dst = 0; dst < output.Length; dst++)
{
output[dst] = (byte)tree.DecodeToken (this);
}
}
void UnpackZeros (byte[] input)
{
int dst = 0;
int dec_zero = 0;
int src = 0;
while (dst < m_output.Length)
{
int code_length = 0;
int count = 0;
byte code;
do
{
if (src >= input.Length)
return;
code = input[src++];
count |= (code & 0x7f) << code_length;
code_length += 7;
}
while (0 != (code & 0x80));
if (dst + count > m_output.Length)
break;
if (0 == dec_zero)
{
if (src + count > input.Length)
break;
Buffer.BlockCopy (input, src, m_output, dst, count);
src += count;
}
else
{
for (int i = 0; i < count; ++i)
m_output[dst+i] = 0;
}
dec_zero ^= 1;
dst += count;
}
}
void ReverseAverageSampling ()
{
for (int y = 0; y < m_info.Height; ++y)
{
int line = y * Stride;
for (int x = 0; x < m_info.Width; ++x)
{
int pixel = line + x * m_pixel_size;
for (int p = 0; p < m_pixel_size; p++)
{
int avg = 0;
if (x > 0)
avg += m_output[pixel + p - m_pixel_size];
if (y > 0)
avg += m_output[pixel + p - Stride];
if (x > 0 && y > 0)
avg /= 2;
if (0 != avg)
m_output[pixel + p] += (byte)avg;
}
}
}
}
void UnpackV2 ()
{
if (m_info.EncLength < 0x80)
throw new InvalidFormatException();
var decoder = new ParallelCbgDecoder (m_info, ReadEncoded());
var base_offset = Input.Position;
decoder.Tree1 = new HuffmanTree (ReadWeightTable (Input, 0x10), true);
decoder.Tree2 = new HuffmanTree (ReadWeightTable (Input, 0xB0), true);
int y_blocks = decoder.Height / 8;
var offsets = new int[y_blocks+1];
int input_base = (int)(Input.Position + offsets.Length*4 - base_offset);
using (var reader = new ArcView.Reader (Input))
{
for (int i = 0; i < offsets.Length; ++i)
offsets[i] = reader.ReadInt32() - input_base;
decoder.Input = reader.ReadBytes ((int)(Input.Length - Input.Position));
}
int pad_skip = ((decoder.Width >> 3) + 7) >> 3;
var tasks = new List<Task> (y_blocks+1);
decoder.Output = new byte[decoder.Width * decoder.Height * 4];
int dst = 0;
for (int i = 0; i < y_blocks; ++i)
{
int block_offset = offsets[i] + pad_skip;
int next_offset = i+1 == y_blocks ? decoder.Input.Length : offsets[i+1];
int closure_dst = dst;
var task = Task.Run (() => decoder.UnpackBlock (block_offset, next_offset-block_offset, closure_dst));
tasks.Add (task);
dst += decoder.Width * 32;
}
if (32 == m_info.BPP)
{
var task = Task.Run (() => decoder.UnpackAlpha (offsets[y_blocks]));
tasks.Add (task);
}
var complete = Task.WhenAll (tasks);
complete.Wait();
Format = decoder.HasAlpha ? PixelFormats.Bgra32 : PixelFormats.Bgr32;
Stride = decoder.Width * 4;
m_output = decoder.Output;
}
}
internal class HuffmanTree
{
HuffmanNode[] m_nodes;
class HuffmanNode
{
public bool Valid;
public bool IsParent;
public uint Weight;
public int LeftChildIndex;
public int RightChildIndex;
}
public HuffmanTree (uint[] leaf_nodes_weight, bool v2 = false)
{
var node_list = new List<HuffmanNode> (leaf_nodes_weight.Length * 2);
uint root_node_weight = 0;
for (int i = 0; i < leaf_nodes_weight.Length; ++i)
{
var node = new HuffmanNode
{
Valid = leaf_nodes_weight[i] != 0,
Weight = leaf_nodes_weight[i],
IsParent = false
};
node_list.Add (node);
root_node_weight += node.Weight;
}
int[] child_node_index = new int[2];
for (;;)
{
uint weight = 0;
for (int i = 0; i < 2; i++)
{
uint min_weight = uint.MaxValue;
child_node_index[i] = -1;
int n = 0;
if (v2)
{
for (; n < node_list.Count; ++n)
{
if (node_list[n].Valid)
{
min_weight = node_list[n].Weight;
child_node_index[i] = n++;
break;
}
}
n = Math.Max (n, i+1);
}
for (; n < node_list.Count; ++n)
{
if (node_list[n].Valid && node_list[n].Weight < min_weight)
{
min_weight = node_list[n].Weight;
child_node_index[i] = n;
}
}
if (-1 == child_node_index[i])
continue;
node_list[child_node_index[i]].Valid = false;
weight += node_list[child_node_index[i]].Weight;
}
var parent_node = new HuffmanNode
{
Valid = true,
IsParent = true,
LeftChildIndex = child_node_index[0],
RightChildIndex = child_node_index[1],
Weight = weight,
};
node_list.Add (parent_node);
if (weight >= root_node_weight)
break;
}
m_nodes = node_list.ToArray();
}
public int DecodeToken (IBitStream input)
{
int node_index = m_nodes.Length-1;
do
{
int bit = input.GetNextBit();
if (-1 == bit)
throw new EndOfStreamException();
if (0 == bit)
node_index = m_nodes[node_index].LeftChildIndex;
else
node_index = m_nodes[node_index].RightChildIndex;
}
while (m_nodes[node_index].IsParent);
return node_index;
}
}
internal class ParallelCbgDecoder
{
public byte[] Input;
public byte[] Output;
public int BPP;
public int Width;
public int Height;
public HuffmanTree Tree1;
public HuffmanTree Tree2;
public bool HasAlpha = false;
float[,] DCT = new float[2, 64];
public ParallelCbgDecoder (CbgMetaData info, byte[] dct_data)
{
BPP = info.BPP;
Width = ((int)info.Width + 7) & -8;
Height = ((int)info.Height + 7) & -8;
for (int i = 0; i < 0x80; ++i)
{
DCT[i >> 6, i & 0x3F] = dct_data[i] * DCT_Table[i & 0x3F];
}
}
static readonly float[] DCT_Table = {
1.00000000f, 1.38703990f, 1.30656302f, 1.17587554f, 1.00000000f, 0.78569496f, 0.54119611f, 0.27589938f,
1.38703990f, 1.92387950f, 1.81225491f, 1.63098633f, 1.38703990f, 1.08979023f, 0.75066054f, 0.38268343f,
1.30656302f, 1.81225491f, 1.70710683f, 1.53635550f, 1.30656302f, 1.02655995f, 0.70710677f, 0.36047992f,
1.17587554f, 1.63098633f, 1.53635550f, 1.38268340f, 1.17587554f, 0.92387950f, 0.63637930f, 0.32442334f,
1.00000000f, 1.38703990f, 1.30656302f, 1.17587554f, 1.00000000f, 0.78569496f, 0.54119611f, 0.27589938f,
0.78569496f, 1.08979023f, 1.02655995f, 0.92387950f, 0.78569496f, 0.61731654f, 0.42521504f, 0.21677275f,
0.54119611f, 0.75066054f, 0.70710677f, 0.63637930f, 0.54119611f, 0.42521504f, 0.29289323f, 0.14931567f,
0.27589938f, 0.38268343f, 0.36047992f, 0.32442334f, 0.27589938f, 0.21677275f, 0.14931567f, 0.07612047f,
};
public void UnpackBlock (int offset, int length, int dst)
{
using (var input = new MemoryStream (this.Input, offset, length))
using (var reader = new MsbBitStream (input))
{
int block_size = CbgReader.ReadInteger (input);
if (-1 == block_size)
return;
var color_data = new short[block_size];
int acc = 0;
for (int i = 0; i < block_size && input.Position < input.Length; i += 64)
{
int count = Tree1.DecodeToken (reader);
if (count != 0)
{
int v = reader.GetBits (count);
if (0 == (v >> (count - 1)))
v = (-1 << count | v) + 1;
acc += v;
}
color_data[i] = (short)acc;
}
if (0 != (reader.CacheSize & 7))
reader.GetBits (reader.CacheSize & 7);
for (int i = 0; i < block_size && input.Position < input.Length; i += 64)
{
int index = 1;
while (index < 64 && input.Position < input.Length)
{
int code = Tree2.DecodeToken (reader);
if (0 == code)
break;
if (0xF == code)
{
index += 0x10;
continue;
}
index += code & 0xF;
if (index >= block_fill_order.Length)
break;
code >>= 4;
int v = reader.GetBits (code);
if (code != 0 && 0 == (v >> (code - 1)))
v = (-1 << code | v) + 1;
color_data[i + block_fill_order[index]] = (short)v;
++index;
}
}
if (8 == BPP)
DecodeGrayscale (color_data, dst);
else
DecodeRGB (color_data, dst);
}
}
static readonly byte[] block_fill_order =
{
0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5,
12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28,
35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51,
58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63,
};
ThreadLocal<short[,]> s_YCbCr_block = new ThreadLocal<short[,]> (() => new short[64, 3]);
short[,] YCbCr_block { get { return s_YCbCr_block.Value; } }
void DecodeRGB (short[] data, int dst)
{
int block_count = Width / 8;
for (int i = 0; i < block_count; ++i)
{
int src = i * 64;
for (int channel = 0; channel < 3; ++channel)
{
DecodeDCT (channel, data, src);
src += Width * 8;
}
for (int j = 0; j < 64; ++j)
{
float cy = YCbCr_block[j,0];
float cb = YCbCr_block[j,1];
float cr = YCbCr_block[j,2];
// Full-range YCbCr->RGB conversion
//
// | 1.0 0.0 1.402 | | Y |
// | 1.0 -0.34414 -0.71414 | x | Cb - 128 |
// | 1.0 1.772 0.0 | | Cr - 128 |
var r = cy + 1.402f * cr - 178.956f;
var g = cy - 0.34414f * cb - 0.71414f * cr + 135.95984f;
var b = cy + 1.772f * cb - 226.316f;
int y = j >> 3;
int x = j & 7;
int p = (y * Width + x) * 4;
Output[dst+p] = FloatToByte (b);
Output[dst+p+1] = FloatToByte (g);
Output[dst+p+2] = FloatToByte (r);
}
dst += 32;
}
}
void DecodeGrayscale (short[] data, int dst)
{
int src = 0;
int block_count = Width / 8;
for (int i = 0; i < block_count; ++i)
{
DecodeDCT (0, data, src);
src += 64;
for (int j = 0; j < 64; ++j)
{
int y = j >> 3;
int x = j & 7;
int p = (y * Width + x) * 4;
Output[dst+p] = (byte)YCbCr_block[j,0];
Output[dst+p+1] = (byte)YCbCr_block[j,0];
Output[dst+p+2] = (byte)YCbCr_block[j,0];
}
dst += 32;
}
}
public void UnpackAlpha (int offset)
{
using (var data = new MemoryStream (this.Input, offset, Input.Length-offset))
using (var input = new BinaryReader (data))
{
if (1 != input.ReadInt32())
return;
int dst = 3;
int ctl = 1 << 1;
while (dst < Output.Length)
{
ctl >>= 1;
if (1 == ctl)
ctl = input.ReadByte() | 0x100;
if (0 != (ctl & 1))
{
int v = input.ReadUInt16();
int x = v & 0x3F;
if (x > 0x1F)
x |= -0x40;
int y = (v >> 6) & 7;
if (y != 0)
y |= -8;
int count = ((v >> 9) & 0x7F) + 3;
int src = dst + (x + y * Width) * 4;
if (src < 0 || src >= dst)
return;
for (int i = 0; i < count; ++i)
{
Output[dst] = Output[src];
src += 4;
dst += 4;
}
}
else
{
Output[dst] = input.ReadByte();
dst += 4;
}
}
HasAlpha = true;
}
}
ThreadLocal<float[,]> s_tmp = new ThreadLocal<float[,]> (() => new float[8,8]);
void DecodeDCT (int channel, short[] data, int src)
{
float v1, v2, v3, v4, v5, v6, v7, v8;
float v9, v10, v11, v12, v13, v14, v15, v16, v17;
int d = channel > 0 ? 1 : 0;
var tmp = s_tmp.Value;
for (int i = 0; i < 8; ++i)
{
if (0 == data[src + 8 + i] && 0 == data[src + 16 + i] && 0 == data[src + 24 + i]
&& 0 == data[src + 32 + i] && 0 == data[src + 40 + i] && 0 == data[src + 48 + i]
&& 0 == data[src + 56 + i])
{
var t = data[src + i] * DCT[d, i];
tmp[0,i] = t;
tmp[1,i] = t;
tmp[2,i] = t;
tmp[3,i] = t;
tmp[4,i] = t;
tmp[5,i] = t;
tmp[6,i] = t;
tmp[7,i] = t;
continue;
}
v1 = data[src + i] * DCT[d,i];
v2 = data[src + 8 + i] * DCT[d, 8 + i];
v3 = data[src + 16 + i] * DCT[d, 16 + i];
v4 = data[src + 24 + i] * DCT[d, 24 + i];
v5 = data[src + 32 + i] * DCT[d, 32 + i];
v6 = data[src + 40 + i] * DCT[d, 40 + i];
v7 = data[src + 48 + i] * DCT[d, 48 + i];
v8 = data[src + 56 + i] * DCT[d, 56 + i];
v10 = v1 + v5;
v11 = v1 - v5;
v12 = v3 + v7;
v13 = (v3 - v7) * 1.414213562f - v12;
v1 = v10 + v12;
v7 = v10 - v12;
v3 = v11 + v13;
v5 = v11 - v13;
v14 = v2 + v8;
v15 = v2 - v8;
v16 = v6 + v4;
v17 = v6 - v4;
v8 = v14 + v16;
v11 = (v14 - v16) * 1.414213562f;
v9 = (v17 + v15) * 1.847759065f;
v10 = 1.082392200f * v15 - v9;
v13 = -2.613125930f * v17 + v9;
v6 = v13 - v8;
v4 = v11 - v6;
v2 = v10 + v4;
tmp[0,i] = v1 + v8;
tmp[1,i] = v3 + v6;
tmp[2,i] = v5 + v4;
tmp[3,i] = v7 - v2;
tmp[4,i] = v7 + v2;
tmp[5,i] = v5 - v4;
tmp[6,i] = v3 - v6;
tmp[7,i] = v1 - v8;
}
int dst = 0;
for (int i = 0; i < 8; ++i)
{
v10 = tmp[i,0] + tmp[i,4];
v11 = tmp[i,0] - tmp[i,4];
v12 = tmp[i,2] + tmp[i,6];
v13 = tmp[i,2] - tmp[i,6];
v14 = tmp[i,1] + tmp[i,7];
v15 = tmp[i,1] - tmp[i,7];
v16 = tmp[i,5] + tmp[i,3];
v17 = tmp[i,5] - tmp[i,3];
v13 = 1.414213562f * v13 - v12;
v1 = v10 + v12;
v7 = v10 - v12;
v3 = v11 + v13;
v5 = v11 - v13;
v8 = v14 + v16;
v11 = (v14 - v16) * 1.414213562f;
v9 = (v17 + v15) * 1.847759065f;
v10 = v9 - v15 * 1.082392200f;
v13 = v9 - v17 * 2.613125930f;
v6 = v13 - v8;
v4 = v11 - v6;
v2 = v10 - v4;
YCbCr_block[dst++, channel] = FloatToShort (v1 + v8);
YCbCr_block[dst++, channel] = FloatToShort (v3 + v6);
YCbCr_block[dst++, channel] = FloatToShort (v5 + v4);
YCbCr_block[dst++, channel] = FloatToShort (v7 + v2);
YCbCr_block[dst++, channel] = FloatToShort (v7 - v2);
YCbCr_block[dst++, channel] = FloatToShort (v5 - v4);
YCbCr_block[dst++, channel] = FloatToShort (v3 - v6);
YCbCr_block[dst++, channel] = FloatToShort (v1 - v8);
}
}
static short FloatToShort (float f)
{
int a = 0x80 + (((int)f) >> 3);
if (a <= 0)
return 0;
if (a <= 0xFF)
return (short)a;
if (a < 0x180)
return 0xFF;
return 0;
}
static byte FloatToByte (float f)
{
if (f >= 0xFF)
return 0xFF;
if (f <= 0)
return 0;
return (byte)f;
}
}
}