mirror of
https://github.com/HIllya51/LunaTranslator.git
synced 2024-12-27 15:44:12 +08:00
.
This commit is contained in:
parent
97c6999f9b
commit
269168d2e7
@ -1,7 +1,7 @@
|
|||||||
|
|
||||||
set(VERSION_MAJOR 6)
|
set(VERSION_MAJOR 6)
|
||||||
set(VERSION_MINOR 7)
|
set(VERSION_MINOR 8)
|
||||||
set(VERSION_PATCH 2)
|
set(VERSION_PATCH 0)
|
||||||
set(VERSION_REVISION 0)
|
set(VERSION_REVISION 0)
|
||||||
set(LUNA_VERSION "{${VERSION_MAJOR},${VERSION_MINOR},${VERSION_PATCH},${VERSION_REVISION}}")
|
set(LUNA_VERSION "{${VERSION_MAJOR},${VERSION_MINOR},${VERSION_PATCH},${VERSION_REVISION}}")
|
||||||
add_library(VERSION_DEF ${CMAKE_CURRENT_LIST_DIR}/version_def.cpp)
|
add_library(VERSION_DEF ${CMAKE_CURRENT_LIST_DIR}/version_def.cpp)
|
||||||
|
@ -239,24 +239,34 @@ DECLARE_API void *add_ContextMenuRequested(void *m_host, int index, const wchar_
|
|||||||
CHECK_FAILURE(items->get_Count(&itemsCount));
|
CHECK_FAILURE(items->get_Count(&itemsCount));
|
||||||
// Adding a custom context menu item for the page that will display the page's URI.
|
// Adding a custom context menu item for the page that will display the page's URI.
|
||||||
wil::com_ptr<ICoreWebView2ContextMenuItem> newMenuItem;
|
wil::com_ptr<ICoreWebView2ContextMenuItem> newMenuItem;
|
||||||
CHECK_FAILURE(webviewEnvironment_5->CreateContextMenuItem(
|
if (data->label.size())
|
||||||
data->label.c_str(),
|
{
|
||||||
nullptr,
|
CHECK_FAILURE(webviewEnvironment_5->CreateContextMenuItem(
|
||||||
COREWEBVIEW2_CONTEXT_MENU_ITEM_KIND_COMMAND, &newMenuItem));
|
data->label.c_str(),
|
||||||
newMenuItem->add_CustomItemSelected(
|
nullptr,
|
||||||
Callback<ICoreWebView2CustomItemSelectedEventHandler>(
|
COREWEBVIEW2_CONTEXT_MENU_ITEM_KIND_COMMAND, &newMenuItem));
|
||||||
[=](
|
newMenuItem->add_CustomItemSelected(
|
||||||
ICoreWebView2ContextMenuItem *sender,
|
Callback<ICoreWebView2CustomItemSelectedEventHandler>(
|
||||||
IUnknown *args)
|
[=](
|
||||||
{
|
ICoreWebView2ContextMenuItem *sender,
|
||||||
LPWSTR selecttext;
|
IUnknown *args)
|
||||||
CHECK_FAILURE(target->get_SelectionText(&selecttext));
|
{
|
||||||
callback(selecttext);
|
LPWSTR selecttext;
|
||||||
// 不需要free,free反而会崩溃
|
CHECK_FAILURE(target->get_SelectionText(&selecttext));
|
||||||
return S_OK;
|
callback(selecttext);
|
||||||
})
|
// 不需要free,free反而会崩溃
|
||||||
.Get(),
|
return S_OK;
|
||||||
nullptr);
|
})
|
||||||
|
.Get(),
|
||||||
|
nullptr);
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
CHECK_FAILURE(webviewEnvironment_5->CreateContextMenuItem(
|
||||||
|
L"",
|
||||||
|
nullptr,
|
||||||
|
COREWEBVIEW2_CONTEXT_MENU_ITEM_KIND_SEPARATOR, &newMenuItem));
|
||||||
|
}
|
||||||
UINT idx;
|
UINT idx;
|
||||||
if (index == -1)
|
if (index == -1)
|
||||||
idx = itemsCount;
|
idx = itemsCount;
|
||||||
|
@ -689,6 +689,13 @@ class MAINUI:
|
|||||||
self.audioplayer.timestamp = uuid.uuid4()
|
self.audioplayer.timestamp = uuid.uuid4()
|
||||||
reader.read(text2, force, self.audioplayer.timestamp)
|
reader.read(text2, force, self.audioplayer.timestamp)
|
||||||
|
|
||||||
|
@tryprint
|
||||||
|
def read_text(self, text):
|
||||||
|
if not self.reader:
|
||||||
|
return
|
||||||
|
self.audioplayer.timestamp = uuid.uuid4()
|
||||||
|
self.reader.read(text, True, self.audioplayer.timestamp)
|
||||||
|
|
||||||
def readcurrent(self, force=False, needresult=False):
|
def readcurrent(self, force=False, needresult=False):
|
||||||
if needresult:
|
if needresult:
|
||||||
text = self.ttsrepair(self.currentread, self.__usewhich())
|
text = self.ttsrepair(self.currentread, self.__usewhich())
|
||||||
@ -941,19 +948,16 @@ class MAINUI:
|
|||||||
)
|
)
|
||||||
|
|
||||||
@threader
|
@threader
|
||||||
def clickwordcallback(self, word, append):
|
def clickwordcallback(self, word):
|
||||||
if globalconfig["usewordorigin"] == False:
|
if globalconfig["usewordorigin"] == False:
|
||||||
word = word["orig"]
|
word = word["orig"]
|
||||||
else:
|
else:
|
||||||
word = word.get("origorig", word["orig"])
|
word = word.get("origorig", word["orig"])
|
||||||
|
|
||||||
if globalconfig["usecopyword"]:
|
if globalconfig["usecopyword"]:
|
||||||
if append:
|
winsharedutils.clipboard_set(word)
|
||||||
winsharedutils.clipboard_set(winsharedutils.clipboard_get() + word)
|
|
||||||
else:
|
|
||||||
winsharedutils.clipboard_set(word)
|
|
||||||
if globalconfig["usesearchword"]:
|
if globalconfig["usesearchword"]:
|
||||||
self.searchwordW.search_word.emit(word, append)
|
self.searchwordW.search_word.emit(word)
|
||||||
|
|
||||||
def __dontshowintaborsetbackdrop(self, widget):
|
def __dontshowintaborsetbackdrop(self, widget):
|
||||||
window_flags = widget.windowFlags()
|
window_flags = widget.windowFlags()
|
||||||
|
96
py/LunaTranslator/cishu/chatgptlike.py
Normal file
96
py/LunaTranslator/cishu/chatgptlike.py
Normal file
@ -0,0 +1,96 @@
|
|||||||
|
import requests
|
||||||
|
from myutils.utils import urlpathjoin, createurl
|
||||||
|
from myutils.proxy import getproxy
|
||||||
|
from cishu.cishubase import cishubase
|
||||||
|
from myutils.commonbase import maybejson
|
||||||
|
from translator.gptcommon import qianfanIAM
|
||||||
|
|
||||||
|
|
||||||
|
def list_models(typename, regist):
|
||||||
|
resp = requests.get(
|
||||||
|
urlpathjoin(
|
||||||
|
createurl(regist["API接口地址"]().strip())[: -len("chat/completions")],
|
||||||
|
"models",
|
||||||
|
),
|
||||||
|
headers={
|
||||||
|
"Authorization": "Bearer " + regist["SECRET_KEY"]().split("|")[0].strip()
|
||||||
|
},
|
||||||
|
proxies=getproxy(("cishu", typename)),
|
||||||
|
)
|
||||||
|
try:
|
||||||
|
return sorted([_["id"] for _ in resp.json()["data"]])
|
||||||
|
except:
|
||||||
|
raise Exception(maybejson(resp))
|
||||||
|
|
||||||
|
|
||||||
|
class chatgptlike(cishubase):
|
||||||
|
def init(self):
|
||||||
|
self.maybeuse = {}
|
||||||
|
|
||||||
|
@property
|
||||||
|
def apiurl(self):
|
||||||
|
return self.config.get(
|
||||||
|
"API接口地址", self.config.get("OPENAI_API_BASE", "")
|
||||||
|
).strip()
|
||||||
|
|
||||||
|
def createdata(self, message):
|
||||||
|
temperature = self.config["Temperature"]
|
||||||
|
data = dict(
|
||||||
|
model=self.config["model"],
|
||||||
|
messages=message,
|
||||||
|
# optional
|
||||||
|
max_tokens=self.config["max_tokens"],
|
||||||
|
n=1,
|
||||||
|
# stop=None,
|
||||||
|
top_p=self.config["top_p"],
|
||||||
|
temperature=temperature,
|
||||||
|
)
|
||||||
|
if "api.mistral.ai" not in self.apiurl:
|
||||||
|
data.update(dict(frequency_penalty=self.config["frequency_penalty"]))
|
||||||
|
return data
|
||||||
|
|
||||||
|
def search(self, word):
|
||||||
|
query = self._gptlike_createquery(
|
||||||
|
word, "use_user_user_prompt", "user_user_prompt"
|
||||||
|
)
|
||||||
|
sysprompt = self._gptlike_createsys("使用自定义promt", "自定义promt")
|
||||||
|
message = [{"role": "system", "content": sysprompt}]
|
||||||
|
message.append({"role": "user", "content": query})
|
||||||
|
response = self.proxysession.post(
|
||||||
|
self.createurl(),
|
||||||
|
headers=self.createheaders(),
|
||||||
|
json=self.createdata(message),
|
||||||
|
)
|
||||||
|
return self.markdown_to_html(self.commonparseresponse(response))
|
||||||
|
|
||||||
|
def createheaders(self):
|
||||||
|
_ = {}
|
||||||
|
curkey = self.config["SECRET_KEY"]
|
||||||
|
if curkey:
|
||||||
|
# 部分白嫖接口可以不填,填了反而报错
|
||||||
|
_.update({"Authorization": "Bearer " + curkey})
|
||||||
|
if "openai.azure.com/openai/deployments/" in self.apiurl:
|
||||||
|
_.update({"api-key": curkey})
|
||||||
|
elif ("qianfan.baidubce.com/v2" in self.apiurl) and (":" in curkey):
|
||||||
|
if not self.maybeuse.get(curkey):
|
||||||
|
Access_Key, Secret_Key = curkey.split(":")
|
||||||
|
key = qianfanIAM.getkey(Access_Key, Secret_Key, self.proxy)
|
||||||
|
self.maybeuse[curkey] = key
|
||||||
|
_.update({"Authorization": "Bearer " + self.maybeuse[curkey]})
|
||||||
|
return _
|
||||||
|
|
||||||
|
def createurl(self):
|
||||||
|
if "openai.azure.com/openai/deployments/" in self.apiurl:
|
||||||
|
return self.apiurl
|
||||||
|
return createurl(self.apiurl)
|
||||||
|
|
||||||
|
def commonparseresponse(self, response: requests.ResponseBase):
|
||||||
|
try:
|
||||||
|
message = (
|
||||||
|
response.json()["choices"][0]["message"]["content"]
|
||||||
|
.replace("\n\n", "\n")
|
||||||
|
.strip()
|
||||||
|
)
|
||||||
|
except:
|
||||||
|
raise Exception(response)
|
||||||
|
return message
|
@ -2,6 +2,15 @@ from myutils.config import globalconfig
|
|||||||
from myutils.wrapper import threader
|
from myutils.wrapper import threader
|
||||||
from traceback import print_exc
|
from traceback import print_exc
|
||||||
from myutils.proxy import getproxy
|
from myutils.proxy import getproxy
|
||||||
|
from myutils.utils import (
|
||||||
|
SafeFormatter,
|
||||||
|
createenglishlangmap,
|
||||||
|
getlangtgt,
|
||||||
|
getlangsrc,
|
||||||
|
create_langmap,
|
||||||
|
)
|
||||||
|
from myutils.commonbase import ArgsEmptyExc, proxysession
|
||||||
|
import re
|
||||||
|
|
||||||
|
|
||||||
class DictTree:
|
class DictTree:
|
||||||
@ -24,6 +33,7 @@ class cishubase:
|
|||||||
|
|
||||||
def __init__(self, typename) -> None:
|
def __init__(self, typename) -> None:
|
||||||
self.typename = typename
|
self.typename = typename
|
||||||
|
self.proxysession = proxysession("cishu", self.typename)
|
||||||
self.callback = print
|
self.callback = print
|
||||||
self.needinit = True
|
self.needinit = True
|
||||||
try:
|
try:
|
||||||
@ -54,3 +64,80 @@ class cishubase:
|
|||||||
@property
|
@property
|
||||||
def config(self):
|
def config(self):
|
||||||
return globalconfig["cishu"][self.typename]["args"]
|
return globalconfig["cishu"][self.typename]["args"]
|
||||||
|
|
||||||
|
def _gptlike_createquery(self, query, usekey, tempk):
|
||||||
|
user_prompt = (
|
||||||
|
self.config.get(tempk, "") if self.config.get(usekey, False) else ""
|
||||||
|
)
|
||||||
|
fmt = SafeFormatter()
|
||||||
|
return fmt.format(user_prompt, must_exists="sentence", sentence=query)
|
||||||
|
|
||||||
|
def _gptlike_createsys(self, usekey, tempk):
|
||||||
|
|
||||||
|
fmt = SafeFormatter()
|
||||||
|
if self.config[usekey]:
|
||||||
|
template = self.config[tempk]
|
||||||
|
else:
|
||||||
|
template = "You are a professional dictionary assistant whose task is to help users search for information such as the meaning, pronunciation, etymology, synonyms, antonyms, and example sentences of {srclang} words. You should be able to handle queries in multiple languages and provide in-depth information or simple definitions according to user needs. You should reply in {tgtlang}."
|
||||||
|
tgt = getlangtgt()
|
||||||
|
src = getlangsrc()
|
||||||
|
langmap = create_langmap(createenglishlangmap())
|
||||||
|
tgtlang = langmap.get(tgt, tgt)
|
||||||
|
srclang = langmap.get(src, src)
|
||||||
|
return fmt.format(template, srclang=srclang, tgtlang=tgtlang)
|
||||||
|
|
||||||
|
def checkempty(self, items):
|
||||||
|
emptys = []
|
||||||
|
for item in items:
|
||||||
|
if (self.config[item]) == "":
|
||||||
|
emptys.append(item)
|
||||||
|
if len(emptys):
|
||||||
|
emptys_s = []
|
||||||
|
argstype = self.config.get("argstype", {})
|
||||||
|
for e in emptys:
|
||||||
|
name = argstype.get(e, {}).get("name", e)
|
||||||
|
emptys_s.append(name)
|
||||||
|
raise ArgsEmptyExc(emptys_s)
|
||||||
|
|
||||||
|
def markdown_to_html(self, markdown_text: str):
|
||||||
|
print(markdown_text)
|
||||||
|
lines = markdown_text.split("\n")
|
||||||
|
html_lines = []
|
||||||
|
|
||||||
|
for line in lines:
|
||||||
|
if line.startswith("# "):
|
||||||
|
html_lines.append(f"<h1>{line[2:]}</h1>")
|
||||||
|
elif line.startswith("## "):
|
||||||
|
html_lines.append(f"<h2>{line[3:]}</h2>")
|
||||||
|
elif line.startswith("### "):
|
||||||
|
html_lines.append(f"<h3>{line[4:]}</h3>")
|
||||||
|
else:
|
||||||
|
|
||||||
|
def parsex(line):
|
||||||
|
line = re.sub(r"\*\*(.*?)\*\*", r"<strong>\1</strong>", line)
|
||||||
|
line = re.sub(r"\*(.*?)\*", r"<em>\1</em>", line)
|
||||||
|
return line
|
||||||
|
|
||||||
|
if line.startswith("- ") or line.startswith("* "):
|
||||||
|
html_lines.append(f"<li>{parsex(line[2:])}</li>")
|
||||||
|
else:
|
||||||
|
html_lines.append(f"<p>{parsex(line)}</p>")
|
||||||
|
final_html = []
|
||||||
|
in_list = False
|
||||||
|
for line in html_lines:
|
||||||
|
if line.startswith("<li>"):
|
||||||
|
if not in_list:
|
||||||
|
final_html.append("<ul>")
|
||||||
|
in_list = True
|
||||||
|
final_html.append(line)
|
||||||
|
elif in_list:
|
||||||
|
final_html.append("</ul>")
|
||||||
|
in_list = False
|
||||||
|
final_html.append(line)
|
||||||
|
else:
|
||||||
|
final_html.append(line)
|
||||||
|
|
||||||
|
if in_list:
|
||||||
|
final_html.append("</ul>")
|
||||||
|
|
||||||
|
return "".join(final_html)
|
||||||
|
91
py/LunaTranslator/cishu/gemini.py
Normal file
91
py/LunaTranslator/cishu/gemini.py
Normal file
@ -0,0 +1,91 @@
|
|||||||
|
import requests
|
||||||
|
from myutils.utils import urlpathjoin
|
||||||
|
from myutils.proxy import getproxy
|
||||||
|
from cishu.cishubase import cishubase
|
||||||
|
|
||||||
|
|
||||||
|
def list_models(typename, regist):
|
||||||
|
js = requests.get(
|
||||||
|
urlpathjoin(regist["BASE_URL"]().strip(), "v1beta/models"),
|
||||||
|
params={"key": regist["SECRET_KEY"]().split("|")[0].strip()},
|
||||||
|
proxies=getproxy(("fanyi", typename)),
|
||||||
|
).json()
|
||||||
|
try:
|
||||||
|
models = js["models"]
|
||||||
|
except:
|
||||||
|
raise Exception(js)
|
||||||
|
mm = []
|
||||||
|
for m in models:
|
||||||
|
name: str = m["name"]
|
||||||
|
supportedGenerationMethods: list = m["supportedGenerationMethods"]
|
||||||
|
if "generateContent" not in supportedGenerationMethods:
|
||||||
|
continue
|
||||||
|
if name.startswith("models/"):
|
||||||
|
name = name[7:]
|
||||||
|
mm.append(name)
|
||||||
|
return sorted(mm)
|
||||||
|
|
||||||
|
|
||||||
|
class gemini(cishubase):
|
||||||
|
|
||||||
|
def search(self, word):
|
||||||
|
self.checkempty(["SECRET_KEY", "model"])
|
||||||
|
api_key = self.config["SECRET_KEY"]
|
||||||
|
model = self.config["model"]
|
||||||
|
query = self._gptlike_createquery(
|
||||||
|
word, "use_user_user_prompt", "user_user_prompt"
|
||||||
|
)
|
||||||
|
safety = {
|
||||||
|
"safety_settings": [
|
||||||
|
{
|
||||||
|
"category": "HARM_CATEGORY_HARASSMENT",
|
||||||
|
"threshold": "BLOCK_NONE",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
|
||||||
|
"threshold": "BLOCK_NONE",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"category": "HARM_CATEGORY_HATE_SPEECH",
|
||||||
|
"threshold": "BLOCK_NONE",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
|
||||||
|
"threshold": "BLOCK_NONE",
|
||||||
|
},
|
||||||
|
]
|
||||||
|
}
|
||||||
|
gen_config = {
|
||||||
|
"generationConfig": {
|
||||||
|
"stopSequences": [" \n"],
|
||||||
|
"temperature": self.config["Temperature"],
|
||||||
|
}
|
||||||
|
}
|
||||||
|
sysprompt = self._gptlike_createsys("use_custom_prompt", "custom_prompt")
|
||||||
|
sys_message = {"systemInstruction": {"parts": {"text": sysprompt}}}
|
||||||
|
contents = {"contents": [{"role": "user", "parts": [{"text": query}]}]}
|
||||||
|
|
||||||
|
payload = {}
|
||||||
|
payload.update(contents)
|
||||||
|
payload.update(safety)
|
||||||
|
payload.update(sys_message)
|
||||||
|
payload.update(gen_config)
|
||||||
|
|
||||||
|
# Set up the request headers and URL
|
||||||
|
headers = {"Content-Type": "application/json"}
|
||||||
|
# by default https://generativelanguage.googleapis.com/v1
|
||||||
|
# Send the request
|
||||||
|
response = self.proxysession.post(
|
||||||
|
urlpathjoin(
|
||||||
|
self.config["BASE_URL"],
|
||||||
|
"v1beta/models/{}:generateContent?key={}".format(model, api_key),
|
||||||
|
),
|
||||||
|
headers=headers,
|
||||||
|
json=payload,
|
||||||
|
)
|
||||||
|
try:
|
||||||
|
return self.markdown_to_html(
|
||||||
|
response.json()["candidates"][0]["content"]["parts"][0]["text"]
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
raise Exception(response) from e
|
@ -2,8 +2,12 @@ import functools, os
|
|||||||
import gobject
|
import gobject
|
||||||
from myutils.utils import splitocrtypes
|
from myutils.utils import splitocrtypes
|
||||||
from myutils.config import globalconfig, _TR, get_platform
|
from myutils.config import globalconfig, _TR, get_platform
|
||||||
from gui.inputdialog import multicolorset, autoinitdialog
|
from gui.inputdialog import (
|
||||||
from gui.inputdialog import autoinitdialog, autoinitdialog_items
|
multicolorset,
|
||||||
|
autoinitdialogx,
|
||||||
|
autoinitdialog_items,
|
||||||
|
autoinitdialog,
|
||||||
|
)
|
||||||
from gui.usefulwidget import (
|
from gui.usefulwidget import (
|
||||||
yuitsu_switch,
|
yuitsu_switch,
|
||||||
makescrollgrid,
|
makescrollgrid,
|
||||||
@ -40,7 +44,7 @@ def gethiragrid(self):
|
|||||||
items[-1]["callback"] = gobject.baseobject.starthira
|
items[-1]["callback"] = gobject.baseobject.starthira
|
||||||
_3 = D_getIconButton(
|
_3 = D_getIconButton(
|
||||||
callback=functools.partial(
|
callback=functools.partial(
|
||||||
autoinitdialog,
|
autoinitdialogx,
|
||||||
self,
|
self,
|
||||||
globalconfig["hirasetting"][name]["args"],
|
globalconfig["hirasetting"][name]["args"],
|
||||||
globalconfig["hirasetting"][name]["name"],
|
globalconfig["hirasetting"][name]["name"],
|
||||||
@ -142,12 +146,14 @@ def initinternal(self, names):
|
|||||||
line += [
|
line += [
|
||||||
D_getIconButton(
|
D_getIconButton(
|
||||||
callback=functools.partial(
|
callback=functools.partial(
|
||||||
autoinitdialog,
|
autoinitdialogx,
|
||||||
self,
|
self,
|
||||||
globalconfig["cishu"][cishu]["args"],
|
globalconfig["cishu"][cishu]["args"],
|
||||||
globalconfig["cishu"][cishu]["name"],
|
globalconfig["cishu"][cishu]["name"],
|
||||||
800,
|
800,
|
||||||
items,
|
items,
|
||||||
|
"cishu." + cishu,
|
||||||
|
cishu,
|
||||||
),
|
),
|
||||||
icon="fa.gear",
|
icon="fa.gear",
|
||||||
),
|
),
|
||||||
|
@ -846,7 +846,7 @@ class DynamicTreeModel(QStandardItemModel):
|
|||||||
if not self.data(index, isWordNode):
|
if not self.data(index, isWordNode):
|
||||||
return
|
return
|
||||||
gobject.baseobject.searchwordW.search_word.emit(
|
gobject.baseobject.searchwordW.search_word.emit(
|
||||||
self.itemFromIndex(index).text(), False
|
self.itemFromIndex(index).text()
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@ -976,7 +976,7 @@ class showdiction(LMainWindow):
|
|||||||
|
|
||||||
|
|
||||||
class searchwordW(closeashidewindow):
|
class searchwordW(closeashidewindow):
|
||||||
search_word = pyqtSignal(str, bool)
|
search_word = pyqtSignal(str)
|
||||||
show_dict_result = pyqtSignal(float, str, str)
|
show_dict_result = pyqtSignal(float, str, str)
|
||||||
search_word_in_new_window = pyqtSignal(str)
|
search_word_in_new_window = pyqtSignal(str)
|
||||||
|
|
||||||
@ -1106,7 +1106,9 @@ class searchwordW(closeashidewindow):
|
|||||||
self.searchlayout.addWidget(searchbutton)
|
self.searchlayout.addWidget(searchbutton)
|
||||||
|
|
||||||
soundbutton = QPushButton(qtawesome.icon("fa.music"), "")
|
soundbutton = QPushButton(qtawesome.icon("fa.music"), "")
|
||||||
soundbutton.clicked.connect(self.tts_for_searched_word)
|
soundbutton.clicked.connect(
|
||||||
|
lambda: gobject.baseobject.read_text(self.searchtext.text())
|
||||||
|
)
|
||||||
soundbutton.setContextMenuPolicy(Qt.ContextMenuPolicy.CustomContextMenu)
|
soundbutton.setContextMenuPolicy(Qt.ContextMenuPolicy.CustomContextMenu)
|
||||||
soundbutton.customContextMenuRequested.connect(self.showmenu_auto_sound)
|
soundbutton.customContextMenuRequested.connect(self.showmenu_auto_sound)
|
||||||
self.soundbutton = soundbutton
|
self.soundbutton = soundbutton
|
||||||
@ -1141,12 +1143,12 @@ class searchwordW(closeashidewindow):
|
|||||||
self.tabks = []
|
self.tabks = []
|
||||||
self.setCentralWidget(ww)
|
self.setCentralWidget(ww)
|
||||||
self.textOutput = auto_select_webview(self, True)
|
self.textOutput = auto_select_webview(self, True)
|
||||||
self.textOutput.add_menu(
|
self.textOutput.add_menu(0, _TR("查词"), self.search_word.emit)
|
||||||
0, _TR("查词"), lambda w: self.search_word.emit(w, False)
|
|
||||||
)
|
|
||||||
self.textOutput.add_menu(
|
self.textOutput.add_menu(
|
||||||
1, _TR("在新窗口中查词"), threader(self.search_word_in_new_window.emit)
|
1, _TR("在新窗口中查词"), threader(self.search_word_in_new_window.emit)
|
||||||
)
|
)
|
||||||
|
self.textOutput.add_menu(2, _TR("翻译"), gobject.baseobject.textgetmethod)
|
||||||
|
self.textOutput.add_menu(3, _TR("朗读"), gobject.baseobject.read_text)
|
||||||
self.textOutput.set_zoom(globalconfig["ZoomFactor"])
|
self.textOutput.set_zoom(globalconfig["ZoomFactor"])
|
||||||
self.textOutput.on_ZoomFactorChanged.connect(
|
self.textOutput.on_ZoomFactorChanged.connect(
|
||||||
functools.partial(globalconfig.__setitem__, "ZoomFactor")
|
functools.partial(globalconfig.__setitem__, "ZoomFactor")
|
||||||
@ -1181,13 +1183,6 @@ class searchwordW(closeashidewindow):
|
|||||||
self.ankiwindow.hide()
|
self.ankiwindow.hide()
|
||||||
self.isfirstshowanki = False
|
self.isfirstshowanki = False
|
||||||
|
|
||||||
def tts_for_searched_word(self):
|
|
||||||
if gobject.baseobject.reader:
|
|
||||||
gobject.baseobject.audioplayer.timestamp = uuid.uuid4()
|
|
||||||
gobject.baseobject.reader.read(
|
|
||||||
self.searchtext.text(), True, gobject.baseobject.audioplayer.timestamp
|
|
||||||
)
|
|
||||||
|
|
||||||
def generate_dictionarys(self):
|
def generate_dictionarys(self):
|
||||||
res = []
|
res = []
|
||||||
tabks = []
|
tabks = []
|
||||||
@ -1206,13 +1201,11 @@ class searchwordW(closeashidewindow):
|
|||||||
res.insert(idx, {"dict": k, "content": v})
|
res.insert(idx, {"dict": k, "content": v})
|
||||||
return res
|
return res
|
||||||
|
|
||||||
def __click_word_search_function(self, word, append):
|
def __click_word_search_function(self, word):
|
||||||
self.showNormal()
|
self.showNormal()
|
||||||
if self.state != 2:
|
if self.state != 2:
|
||||||
return
|
return
|
||||||
word = word.strip()
|
word = word.strip()
|
||||||
if append:
|
|
||||||
word = self.searchtext.text() + word
|
|
||||||
self.searchtext.setText(word)
|
self.searchtext.setText(word)
|
||||||
|
|
||||||
self.search(word)
|
self.search(word)
|
||||||
@ -1263,7 +1256,7 @@ class searchwordW(closeashidewindow):
|
|||||||
if word == "":
|
if word == "":
|
||||||
return
|
return
|
||||||
if globalconfig["is_search_word_auto_tts"]:
|
if globalconfig["is_search_word_auto_tts"]:
|
||||||
self.tts_for_searched_word()
|
gobject.baseobject.read_text(self.searchtext.text())
|
||||||
self.ankiwindow.reset(word)
|
self.ankiwindow.reset(word)
|
||||||
for i in range(self.tab.count()):
|
for i in range(self.tab.count()):
|
||||||
self.tab.removeTab(0)
|
self.tab.removeTab(0)
|
||||||
|
@ -1304,6 +1304,8 @@ class WebivewWidget(abstractwebview):
|
|||||||
t.timeout.emit()
|
t.timeout.emit()
|
||||||
t.start()
|
t.start()
|
||||||
|
|
||||||
|
self.add_menu(0, "", lambda _: None)
|
||||||
|
|
||||||
def __darkstatechecker(self):
|
def __darkstatechecker(self):
|
||||||
dl = globalconfig["darklight2"]
|
dl = globalconfig["darklight2"]
|
||||||
if dl == self.__darkstate:
|
if dl == self.__darkstate:
|
||||||
@ -1455,6 +1457,7 @@ class QWebWrap(abstractwebview):
|
|||||||
|
|
||||||
class mshtmlWidget(abstractwebview):
|
class mshtmlWidget(abstractwebview):
|
||||||
CommandBase = 10086
|
CommandBase = 10086
|
||||||
|
|
||||||
def __del__(self):
|
def __del__(self):
|
||||||
if not self.browser:
|
if not self.browser:
|
||||||
return
|
return
|
||||||
|
@ -1,6 +1,6 @@
|
|||||||
from myutils.proxy import getproxy
|
from myutils.proxy import getproxy
|
||||||
from myutils.utils import getlangtgt, getlangsrc, getlanguagespace
|
from myutils.utils import getlangtgt, getlangsrc, getlanguagespace, create_langmap
|
||||||
from myutils.config import _TR, static_data
|
from myutils.config import _TR
|
||||||
from myutils.wrapper import stripwrapper
|
from myutils.wrapper import stripwrapper
|
||||||
import requests
|
import requests
|
||||||
|
|
||||||
@ -95,15 +95,7 @@ class commonbase:
|
|||||||
|
|
||||||
@property
|
@property
|
||||||
def langmap_(self):
|
def langmap_(self):
|
||||||
_ = dict(
|
return create_langmap(self.langmap())
|
||||||
zip(
|
|
||||||
[_["code"] for _ in static_data["lang_list_all"]],
|
|
||||||
[_["code"] for _ in static_data["lang_list_all"]],
|
|
||||||
)
|
|
||||||
)
|
|
||||||
_.update({"cht": "zh", "auto": "auto"})
|
|
||||||
_.update(self.langmap())
|
|
||||||
return _
|
|
||||||
|
|
||||||
def __init__(self, typename) -> None:
|
def __init__(self, typename) -> None:
|
||||||
self.typename = typename
|
self.typename = typename
|
||||||
|
@ -920,6 +920,18 @@ def createurl(url: str):
|
|||||||
return url
|
return url
|
||||||
|
|
||||||
|
|
||||||
|
def create_langmap(langmap):
|
||||||
|
_ = dict(
|
||||||
|
zip(
|
||||||
|
[_["code"] for _ in static_data["lang_list_all"]],
|
||||||
|
[_["code"] for _ in static_data["lang_list_all"]],
|
||||||
|
)
|
||||||
|
)
|
||||||
|
_.update({"cht": "zh", "auto": "auto"})
|
||||||
|
_.update(langmap)
|
||||||
|
return _
|
||||||
|
|
||||||
|
|
||||||
def createenglishlangmap():
|
def createenglishlangmap():
|
||||||
mp = dict(
|
mp = dict(
|
||||||
zip(
|
zip(
|
||||||
|
@ -1,43 +0,0 @@
|
|||||||
import base64
|
|
||||||
from ocrengines.baseocrclass import baseocr
|
|
||||||
|
|
||||||
|
|
||||||
class OCR(baseocr):
|
|
||||||
def initocr(self):
|
|
||||||
self.tokens = {}
|
|
||||||
self.check()
|
|
||||||
|
|
||||||
def check(self):
|
|
||||||
self.checkempty(["app_id", "app_secret"])
|
|
||||||
app_id = self.config["app_id"]
|
|
||||||
app_secret = self.config["app_secret"]
|
|
||||||
if (app_id, app_secret) not in self.tokens:
|
|
||||||
res = self.proxysession.post(
|
|
||||||
"https://open.feishu.cn/open-apis/auth/v3/tenant_access_token/internal",
|
|
||||||
headers={"Content-Type": "application/json; charset=utf-8"},
|
|
||||||
json={"app_id": app_id, "app_secret": app_secret},
|
|
||||||
)
|
|
||||||
try:
|
|
||||||
token = res.json()["tenant_access_token"]
|
|
||||||
except:
|
|
||||||
raise Exception(res)
|
|
||||||
self.tokens[(app_id, app_secret)] = token
|
|
||||||
return self.tokens[(app_id, app_secret)]
|
|
||||||
|
|
||||||
def ocr(self, imagebinary):
|
|
||||||
token = self.check()
|
|
||||||
b64 = base64.b64encode(imagebinary)
|
|
||||||
res = self.proxysession.post(
|
|
||||||
"https://open.feishu.cn/open-apis/optical_char_recognition/v1/image/basic_recognize",
|
|
||||||
headers={
|
|
||||||
"Content-Type": "application/json; charset=utf-8",
|
|
||||||
"Authorization": "Bearer " + token,
|
|
||||||
},
|
|
||||||
json={
|
|
||||||
"image": str(b64, encoding="utf8"),
|
|
||||||
},
|
|
||||||
)
|
|
||||||
try:
|
|
||||||
return res.json()["data"]["text_list"]
|
|
||||||
except:
|
|
||||||
raise Exception(res)
|
|
@ -69,10 +69,6 @@ class OCR(baseocr):
|
|||||||
proxies=self.proxy,
|
proxies=self.proxy,
|
||||||
)
|
)
|
||||||
try:
|
try:
|
||||||
# Handle the response
|
return response.json()["candidates"][0]["content"]["parts"][0]["text"]
|
||||||
if response.status_code == 200:
|
|
||||||
return response.json()["candidates"][0]["content"]["parts"][0]["text"]
|
|
||||||
else:
|
|
||||||
raise Exception(response)
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
raise Exception(response) from e
|
raise Exception(response) from e
|
||||||
|
@ -1,7 +1,7 @@
|
|||||||
from qtsymbols import *
|
from qtsymbols import *
|
||||||
from myutils.config import globalconfig, static_data
|
from myutils.config import globalconfig, static_data
|
||||||
from rendertext.somefunctions import dataget
|
from rendertext.somefunctions import dataget
|
||||||
import gobject, functools, importlib, winsharedutils
|
import gobject, functools, importlib, winsharedutils, uuid
|
||||||
from traceback import print_exc
|
from traceback import print_exc
|
||||||
from rendertext.textbrowser_imp.base import base
|
from rendertext.textbrowser_imp.base import base
|
||||||
from gui.dynalang import LAction
|
from gui.dynalang import LAction
|
||||||
@ -22,10 +22,8 @@ class Qlabel_c(QLabel):
|
|||||||
if self.rect().contains(event.pos()):
|
if self.rect().contains(event.pos()):
|
||||||
try:
|
try:
|
||||||
if self.pr:
|
if self.pr:
|
||||||
if event.button() == Qt.MouseButton.RightButton:
|
if event.button() == Qt.MouseButton.LeftButton:
|
||||||
self.callback(True)
|
self.callback()
|
||||||
else:
|
|
||||||
self.callback(False)
|
|
||||||
except:
|
except:
|
||||||
print_exc()
|
print_exc()
|
||||||
self.pr = False
|
self.pr = False
|
||||||
@ -102,18 +100,26 @@ class TextBrowser(QWidget, dataget):
|
|||||||
curr = self.textbrowser.textCursor().selectedText()
|
curr = self.textbrowser.textCursor().selectedText()
|
||||||
if not curr:
|
if not curr:
|
||||||
return
|
return
|
||||||
menu = QMenu(self)
|
menu = QMenu(gobject.baseobject.commonstylebase)
|
||||||
|
|
||||||
search = LAction(("查词"))
|
search = LAction(("查词"))
|
||||||
|
translate = LAction(("翻译"))
|
||||||
|
tts = LAction(("朗读"))
|
||||||
copy = LAction(("复制"))
|
copy = LAction(("复制"))
|
||||||
|
|
||||||
menu.addAction(search)
|
menu.addAction(search)
|
||||||
|
menu.addAction(translate)
|
||||||
|
menu.addAction(tts)
|
||||||
|
menu.addSeparator()
|
||||||
menu.addAction(copy)
|
menu.addAction(copy)
|
||||||
action = menu.exec(self.mapToGlobal(p))
|
action = menu.exec(self.mapToGlobal(p))
|
||||||
if action == search:
|
if action == search:
|
||||||
gobject.baseobject.searchwordW.search_word.emit(curr, False)
|
gobject.baseobject.searchwordW.search_word.emit(curr)
|
||||||
elif action == copy:
|
elif action == copy:
|
||||||
winsharedutils.clipboard_set(curr)
|
winsharedutils.clipboard_set(curr)
|
||||||
|
elif action == tts:
|
||||||
|
gobject.baseobject.read_text(curr)
|
||||||
|
elif action == translate:
|
||||||
|
gobject.baseobject.textgetmethod(curr, False)
|
||||||
|
|
||||||
def __init__(self, parent) -> None:
|
def __init__(self, parent) -> None:
|
||||||
super().__init__(parent)
|
super().__init__(parent)
|
||||||
|
@ -54,12 +54,14 @@ class TextBrowser(QWidget, dataget):
|
|||||||
)
|
)
|
||||||
)
|
)
|
||||||
windows.SetWindowLongPtr(webviewhwnd, windows.GWLP_WNDPROC, self.wndproc)
|
windows.SetWindowLongPtr(webviewhwnd, windows.GWLP_WNDPROC, self.wndproc)
|
||||||
|
self.webivewwidget.add_menu(0, _TR("朗读"), gobject.baseobject.read_text)
|
||||||
|
self.webivewwidget.add_menu(0, _TR("翻译"), gobject.baseobject.textgetmethod)
|
||||||
self.webivewwidget.add_menu(
|
self.webivewwidget.add_menu(
|
||||||
0,
|
0,
|
||||||
_TR("查词"),
|
_TR("查词"),
|
||||||
threader(
|
threader(
|
||||||
lambda w: gobject.baseobject.searchwordW.search_word.emit(
|
lambda w: gobject.baseobject.searchwordW.search_word.emit(
|
||||||
w.replace("\n", "").strip(), False
|
w.replace("\n", "").strip()
|
||||||
)
|
)
|
||||||
),
|
),
|
||||||
)
|
)
|
||||||
@ -191,9 +193,9 @@ class TextBrowser(QWidget, dataget):
|
|||||||
def calllunaclickedword(self, wordinfo):
|
def calllunaclickedword(self, wordinfo):
|
||||||
clickfunction = wordinfo.get("clickfunction", None)
|
clickfunction = wordinfo.get("clickfunction", None)
|
||||||
if clickfunction:
|
if clickfunction:
|
||||||
self.saveclickfunction.get(clickfunction)(False)
|
self.saveclickfunction.get(clickfunction)()
|
||||||
else:
|
else:
|
||||||
gobject.baseobject.clickwordcallback(wordinfo, False)
|
gobject.baseobject.clickwordcallback(wordinfo)
|
||||||
|
|
||||||
# native api end
|
# native api end
|
||||||
|
|
||||||
|
@ -1,107 +0,0 @@
|
|||||||
from translator.basetranslator import basetrans
|
|
||||||
import json, requests
|
|
||||||
from traceback import print_exc
|
|
||||||
from myutils.utils import createenglishlangmap
|
|
||||||
|
|
||||||
|
|
||||||
class TS(basetrans):
|
|
||||||
|
|
||||||
def langmap(self):
|
|
||||||
return createenglishlangmap()
|
|
||||||
|
|
||||||
def __init__(self, typename):
|
|
||||||
self.context = []
|
|
||||||
self.access = {}
|
|
||||||
super().__init__(typename)
|
|
||||||
|
|
||||||
def createdata(self, message):
|
|
||||||
temperature = self.config["Temperature"]
|
|
||||||
system = self._gptlike_createsys("use_user_prompt", "user_prompt")
|
|
||||||
|
|
||||||
data = dict(
|
|
||||||
system=system,
|
|
||||||
model=self.config["model"],
|
|
||||||
messages=message,
|
|
||||||
# optional
|
|
||||||
max_tokens=self.config["max_tokens"],
|
|
||||||
n=1,
|
|
||||||
# stop=None,
|
|
||||||
top_p=self.config["top_p"],
|
|
||||||
temperature=temperature,
|
|
||||||
frequency_penalty=self.config["frequency_penalty"],
|
|
||||||
stream=self.config["usingstream"],
|
|
||||||
)
|
|
||||||
return data
|
|
||||||
|
|
||||||
def commonparseresponse(self, query, response: requests.ResponseBase, usingstream):
|
|
||||||
if usingstream:
|
|
||||||
message = ""
|
|
||||||
for chunk in response.iter_lines():
|
|
||||||
response_data = chunk.decode("utf-8").strip()
|
|
||||||
if not response_data:
|
|
||||||
continue
|
|
||||||
try:
|
|
||||||
json_data = json.loads(response_data[6:])
|
|
||||||
msg = json_data["result"].replace("\n\n", "\n").strip()
|
|
||||||
message += msg
|
|
||||||
|
|
||||||
except:
|
|
||||||
print_exc()
|
|
||||||
raise Exception(response_data)
|
|
||||||
yield msg
|
|
||||||
else:
|
|
||||||
try:
|
|
||||||
message = response.json()["result"].replace("\n\n", "\n").strip()
|
|
||||||
except:
|
|
||||||
raise Exception(response)
|
|
||||||
yield message
|
|
||||||
self.context.append({"role": "user", "content": query})
|
|
||||||
self.context.append({"role": "assistant", "content": message})
|
|
||||||
|
|
||||||
def get_access_token(self, API_KEY, SECRET_KEY):
|
|
||||||
url = "https://aip.baidubce.com/oauth/2.0/token"
|
|
||||||
params = {
|
|
||||||
"grant_type": "client_credentials",
|
|
||||||
"client_id": API_KEY,
|
|
||||||
"client_secret": SECRET_KEY,
|
|
||||||
}
|
|
||||||
js = self.proxysession.post(url, params=params).json()
|
|
||||||
|
|
||||||
try:
|
|
||||||
return js["access_token"]
|
|
||||||
except:
|
|
||||||
raise Exception(js)
|
|
||||||
|
|
||||||
def checkchange(self):
|
|
||||||
self.checkempty(["model", "SECRET_KEY", "API_KEY"])
|
|
||||||
SECRET_KEY, API_KEY = (
|
|
||||||
self.multiapikeycurrent["SECRET_KEY"],
|
|
||||||
self.multiapikeycurrent["API_KEY"],
|
|
||||||
)
|
|
||||||
if not self.access.get((API_KEY, SECRET_KEY)):
|
|
||||||
acss = self.get_access_token(API_KEY, SECRET_KEY)
|
|
||||||
self.access[(API_KEY, SECRET_KEY)] = acss
|
|
||||||
return self.access[(API_KEY, SECRET_KEY)]
|
|
||||||
|
|
||||||
def translate(self, query):
|
|
||||||
acss = self.checkchange()
|
|
||||||
query = self._gptlike_createquery(
|
|
||||||
query, "use_user_user_prompt", "user_user_prompt"
|
|
||||||
)
|
|
||||||
message = []
|
|
||||||
self._gpt_common_parse_context(
|
|
||||||
message, self.context, self.config["context_num"]
|
|
||||||
)
|
|
||||||
message.append({"role": "user", "content": query})
|
|
||||||
|
|
||||||
usingstream = self.config["usingstream"]
|
|
||||||
url = "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/{}?access_token={}".format(
|
|
||||||
self.config["model"], acss
|
|
||||||
)
|
|
||||||
|
|
||||||
response = self.proxysession.post(
|
|
||||||
url,
|
|
||||||
json=self.createdata(message),
|
|
||||||
stream=usingstream,
|
|
||||||
)
|
|
||||||
return self.commonparseresponse(query, response, usingstream)
|
|
@ -1,48 +0,0 @@
|
|||||||
from translator.basetranslator import basetrans
|
|
||||||
|
|
||||||
|
|
||||||
class TS(basetrans):
|
|
||||||
def langmap(self):
|
|
||||||
return {"cht": "zh-Hant"}
|
|
||||||
|
|
||||||
def inittranslator(self):
|
|
||||||
self.tokens = {}
|
|
||||||
self.check()
|
|
||||||
|
|
||||||
def check(self):
|
|
||||||
self.checkempty(["app_id", "app_secret"])
|
|
||||||
app_id = self.multiapikeycurrent["app_id"]
|
|
||||||
app_secret = self.multiapikeycurrent["app_secret"]
|
|
||||||
if (app_id, app_secret) not in self.tokens:
|
|
||||||
res = self.proxysession.post(
|
|
||||||
"https://open.feishu.cn/open-apis/auth/v3/tenant_access_token/internal",
|
|
||||||
headers={"Content-Type": "application/json; charset=utf-8"},
|
|
||||||
json={"app_id": app_id, "app_secret": app_secret},
|
|
||||||
)
|
|
||||||
try:
|
|
||||||
token = res.json()["tenant_access_token"]
|
|
||||||
except:
|
|
||||||
raise Exception(res)
|
|
||||||
self.tokens[(app_id, app_secret)] = token
|
|
||||||
return self.tokens[(app_id, app_secret)]
|
|
||||||
|
|
||||||
def translate(self, query):
|
|
||||||
|
|
||||||
token = self.check()
|
|
||||||
res = self.proxysession.post(
|
|
||||||
"https://open.feishu.cn/open-apis/translation/v1/text/translate",
|
|
||||||
headers={
|
|
||||||
"Content-Type": "application/json; charset=utf-8",
|
|
||||||
"Authorization": "Bearer " + token,
|
|
||||||
},
|
|
||||||
json={
|
|
||||||
"source_language": self.srclang,
|
|
||||||
"text": query,
|
|
||||||
"target_language": self.tgtlang,
|
|
||||||
"glossary": [],
|
|
||||||
},
|
|
||||||
)
|
|
||||||
try:
|
|
||||||
return res.json()["data"]["text"]
|
|
||||||
except:
|
|
||||||
raise Exception(res)
|
|
@ -1,301 +0,0 @@
|
|||||||
from translator.basetranslator import basetrans
|
|
||||||
import ctypes
|
|
||||||
import os
|
|
||||||
import glob
|
|
||||||
import platform
|
|
||||||
import re
|
|
||||||
|
|
||||||
|
|
||||||
class TS(basetrans):
|
|
||||||
def inittranslator(self):
|
|
||||||
self.checkempty(["path"])
|
|
||||||
path = self.config["path"]
|
|
||||||
if os.path.exists(path) == False:
|
|
||||||
raise Exception("OrtMTLib translator path incorrect")
|
|
||||||
|
|
||||||
model_path_candidates = glob.glob(
|
|
||||||
os.path.join(path, "translator_model", "*.onnx"), recursive=True
|
|
||||||
)
|
|
||||||
if len(model_path_candidates) > 0:
|
|
||||||
model_path = model_path_candidates[0]
|
|
||||||
else:
|
|
||||||
raise Exception("onnx file not found!")
|
|
||||||
|
|
||||||
tok_path_candidates = glob.glob(
|
|
||||||
os.path.join(path, "tokenizer_model", "*.model")
|
|
||||||
)
|
|
||||||
if len(model_path_candidates) > 0:
|
|
||||||
tok_path = tok_path_candidates[0]
|
|
||||||
else:
|
|
||||||
raise Exception("sentencepiece tokenizer file not found!")
|
|
||||||
|
|
||||||
if platform.architecture()[0] == "64bit":
|
|
||||||
self.setup_splib(os.path.join(path, "bin/x64/splib.dll"), tok_path)
|
|
||||||
else:
|
|
||||||
self.setup_splib(os.path.join(path, "bin/x86/splib.dll"), tok_path)
|
|
||||||
|
|
||||||
if platform.architecture()[0] == "64bit":
|
|
||||||
self.setup_ortmtlib(os.path.join(path, "bin/x64/ortmtlib.dll"), model_path)
|
|
||||||
else:
|
|
||||||
self.setup_ortmtlib(os.path.join(path, "bin/x86/ortmtlib.dll"), model_path)
|
|
||||||
self.create_ort_tensors()
|
|
||||||
|
|
||||||
def setup_splib(self, sp_dll_path, tok_path):
|
|
||||||
self.splib = ctypes.CDLL(sp_dll_path)
|
|
||||||
|
|
||||||
self.splib.create_sp_tokenizer.argtypes = (ctypes.c_char_p,)
|
|
||||||
self.splib.create_sp_tokenizer.restype = ctypes.c_int
|
|
||||||
|
|
||||||
self.splib.encode_as_ids.argtypes = (
|
|
||||||
ctypes.c_char_p,
|
|
||||||
ctypes.POINTER(ctypes.POINTER(ctypes.c_int)),
|
|
||||||
ctypes.POINTER(ctypes.c_size_t),
|
|
||||||
)
|
|
||||||
self.splib.encode_as_ids.restype = ctypes.c_int
|
|
||||||
|
|
||||||
self.splib.decode_from_ids.argtypes = (
|
|
||||||
ctypes.POINTER(ctypes.c_int),
|
|
||||||
ctypes.c_size_t,
|
|
||||||
ctypes.POINTER(ctypes.c_char_p),
|
|
||||||
)
|
|
||||||
self.splib.decode_from_ids.restype = ctypes.c_int
|
|
||||||
|
|
||||||
tok_path_ctypes = ctypes.c_char_p(bytes(tok_path, "utf8"))
|
|
||||||
res = self.splib.create_sp_tokenizer(tok_path_ctypes)
|
|
||||||
return
|
|
||||||
|
|
||||||
def setup_ortmtlib(self, ort_dll_path, model_path):
|
|
||||||
self.ort = ctypes.CDLL(
|
|
||||||
os.path.join(os.path.dirname(ort_dll_path), "onnxruntime.dll")
|
|
||||||
)
|
|
||||||
self.ortmtlib = ctypes.CDLL(ort_dll_path)
|
|
||||||
|
|
||||||
self.ortmtlib.create_ort_session.restype = ctypes.c_int
|
|
||||||
self.ortmtlib.create_ort_session.argtypes = (ctypes.c_char_p, ctypes.c_int)
|
|
||||||
|
|
||||||
self.ortmtlib.create_tensor_int32.restype = ctypes.c_int
|
|
||||||
self.ortmtlib.create_tensor_int32.argtypes = (
|
|
||||||
ctypes.POINTER(ctypes.c_int32),
|
|
||||||
ctypes.c_size_t,
|
|
||||||
ctypes.POINTER(ctypes.c_longlong),
|
|
||||||
ctypes.c_size_t,
|
|
||||||
ctypes.POINTER(ctypes.c_void_p),
|
|
||||||
)
|
|
||||||
|
|
||||||
self.ortmtlib.create_tensor_float.restype = ctypes.c_int
|
|
||||||
self.ortmtlib.create_tensor_float.argtypes = (
|
|
||||||
ctypes.POINTER(ctypes.c_float),
|
|
||||||
ctypes.c_size_t,
|
|
||||||
ctypes.POINTER(ctypes.c_longlong),
|
|
||||||
ctypes.c_size_t,
|
|
||||||
ctypes.POINTER(ctypes.c_void_p),
|
|
||||||
)
|
|
||||||
|
|
||||||
self.ortmtlib.run_session.argtypes = (
|
|
||||||
ctypes.POINTER(ctypes.c_void_p),
|
|
||||||
ctypes.c_char_p,
|
|
||||||
ctypes.POINTER(ctypes.POINTER(ctypes.c_int)),
|
|
||||||
ctypes.POINTER(ctypes.c_size_t),
|
|
||||||
)
|
|
||||||
self.ortmtlib.run_session.restype = ctypes.c_int
|
|
||||||
|
|
||||||
model_path_ctypes = ctypes.c_char_p(bytes(model_path, "utf8"))
|
|
||||||
n_threads_ctypes = ctypes.c_int(6)
|
|
||||||
res = self.ortmtlib.create_ort_session(model_path_ctypes, n_threads_ctypes)
|
|
||||||
return
|
|
||||||
|
|
||||||
def create_ort_tensors(self):
|
|
||||||
max_length = int(self.config["最大生成长度"])
|
|
||||||
min_length = int(self.config["最小生成长度"])
|
|
||||||
num_beams = int(self.config["柱搜索数"])
|
|
||||||
num_return_sequences = int(self.config["序列数"])
|
|
||||||
length_penalty = float(self.config["过长惩罚"])
|
|
||||||
repetition_penalty = float(self.config["重复惩罚"])
|
|
||||||
|
|
||||||
self.max_length_tensor = ctypes.c_void_p()
|
|
||||||
self.min_length_tensor = ctypes.c_void_p()
|
|
||||||
self.num_beams_tensor = ctypes.c_void_p()
|
|
||||||
self.num_return_sequences_tensor = ctypes.c_void_p()
|
|
||||||
self.length_penalty_tensor = ctypes.c_void_p()
|
|
||||||
self.repetition_penalty_tensor = ctypes.c_void_p()
|
|
||||||
|
|
||||||
self.shape_one = (ctypes.c_longlong * 1)(1)
|
|
||||||
self.len_one = ctypes.c_size_t(1)
|
|
||||||
|
|
||||||
self.max_length_ctypes = (ctypes.c_int32 * 1)(max_length)
|
|
||||||
res = self.ortmtlib.create_tensor_int32(
|
|
||||||
self.max_length_ctypes,
|
|
||||||
self.len_one,
|
|
||||||
self.shape_one,
|
|
||||||
self.len_one,
|
|
||||||
ctypes.byref(self.max_length_tensor),
|
|
||||||
)
|
|
||||||
|
|
||||||
self.min_length_ctypes = (ctypes.c_int32 * 1)(min_length)
|
|
||||||
res = self.ortmtlib.create_tensor_int32(
|
|
||||||
self.min_length_ctypes,
|
|
||||||
self.len_one,
|
|
||||||
self.shape_one,
|
|
||||||
self.len_one,
|
|
||||||
ctypes.byref(self.min_length_tensor),
|
|
||||||
)
|
|
||||||
|
|
||||||
self.num_beams_ctypes = (ctypes.c_int32 * 1)(num_beams)
|
|
||||||
res = self.ortmtlib.create_tensor_int32(
|
|
||||||
self.num_beams_ctypes,
|
|
||||||
self.len_one,
|
|
||||||
self.shape_one,
|
|
||||||
self.len_one,
|
|
||||||
ctypes.byref(self.num_beams_tensor),
|
|
||||||
)
|
|
||||||
|
|
||||||
self.num_return_sequences_ctypes = (ctypes.c_int32 * 1)(num_return_sequences)
|
|
||||||
res = self.ortmtlib.create_tensor_int32(
|
|
||||||
self.num_return_sequences_ctypes,
|
|
||||||
self.len_one,
|
|
||||||
self.shape_one,
|
|
||||||
self.len_one,
|
|
||||||
ctypes.byref(self.num_return_sequences_tensor),
|
|
||||||
)
|
|
||||||
|
|
||||||
self.length_penalty_ctypes = (ctypes.c_float * 1)(length_penalty)
|
|
||||||
res = self.ortmtlib.create_tensor_float(
|
|
||||||
self.length_penalty_ctypes,
|
|
||||||
self.len_one,
|
|
||||||
self.shape_one,
|
|
||||||
self.len_one,
|
|
||||||
ctypes.byref(self.length_penalty_tensor),
|
|
||||||
)
|
|
||||||
|
|
||||||
self.repetition_penalty_ctypes = (ctypes.c_float * 1)(repetition_penalty)
|
|
||||||
res = self.ortmtlib.create_tensor_float(
|
|
||||||
self.repetition_penalty_ctypes,
|
|
||||||
self.len_one,
|
|
||||||
self.shape_one,
|
|
||||||
self.len_one,
|
|
||||||
ctypes.byref(self.repetition_penalty_tensor),
|
|
||||||
)
|
|
||||||
return
|
|
||||||
|
|
||||||
def encode_as_ids(self, content):
|
|
||||||
input_str = ctypes.c_char_p(
|
|
||||||
"<-{}2{}-> {}".format(self.srclang, self.tgtlang, content).encode("utf8")
|
|
||||||
)
|
|
||||||
token_ids = ctypes.POINTER(ctypes.c_int32)()
|
|
||||||
n_tokens = ctypes.c_size_t()
|
|
||||||
|
|
||||||
decoded_str = ctypes.c_char_p()
|
|
||||||
res = self.splib.encode_as_ids(
|
|
||||||
input_str, ctypes.byref(token_ids), ctypes.byref(n_tokens)
|
|
||||||
)
|
|
||||||
input_ids_len = n_tokens.value
|
|
||||||
input_ids_py = [token_ids[i] for i in range(input_ids_len)]
|
|
||||||
input_ids_py += [
|
|
||||||
1
|
|
||||||
] # add EOS token to notify the end of sentence and prevent repetition
|
|
||||||
|
|
||||||
self.splib.free_ptr(token_ids)
|
|
||||||
return input_ids_py
|
|
||||||
|
|
||||||
def decode_from_ids(self, output_ids_py):
|
|
||||||
output_len = len(output_ids_py)
|
|
||||||
|
|
||||||
decoded_str = ctypes.c_char_p()
|
|
||||||
output_ids_ctypes = (ctypes.c_int * output_len)(*output_ids_py)
|
|
||||||
res = self.splib.decode_from_ids(
|
|
||||||
output_ids_ctypes, output_len, ctypes.byref(decoded_str)
|
|
||||||
)
|
|
||||||
decoded_str_py = decoded_str.value.decode("utf8")
|
|
||||||
|
|
||||||
self.splib.free_ptr(decoded_str)
|
|
||||||
return decoded_str_py
|
|
||||||
|
|
||||||
def run_session(self, input_ids_py):
|
|
||||||
input_ids_len = len(input_ids_py)
|
|
||||||
input_ids_tensor = ctypes.c_void_p()
|
|
||||||
input_ids_ctypes = (ctypes.c_int32 * input_ids_len)(*input_ids_py)
|
|
||||||
input_ids_len_ctypes = ctypes.c_size_t(input_ids_len)
|
|
||||||
input_shape_ctypes = (ctypes.c_longlong * 2)(1, input_ids_len)
|
|
||||||
input_shape_len_ctypes = ctypes.c_size_t(2)
|
|
||||||
res = self.ortmtlib.create_tensor_int32(
|
|
||||||
input_ids_ctypes,
|
|
||||||
input_ids_len_ctypes,
|
|
||||||
input_shape_ctypes,
|
|
||||||
input_shape_len_ctypes,
|
|
||||||
ctypes.byref(input_ids_tensor),
|
|
||||||
)
|
|
||||||
|
|
||||||
# self.ortmtlib.print_tensor_int32(input_ids_tensor)
|
|
||||||
input_tensors = [
|
|
||||||
input_ids_tensor,
|
|
||||||
self.max_length_tensor,
|
|
||||||
self.min_length_tensor,
|
|
||||||
self.num_beams_tensor,
|
|
||||||
self.num_return_sequences_tensor,
|
|
||||||
self.length_penalty_tensor,
|
|
||||||
self.repetition_penalty_tensor,
|
|
||||||
]
|
|
||||||
input_tensors_ctypes = (ctypes.c_void_p * len(input_tensors))(*input_tensors)
|
|
||||||
output_ids = ctypes.POINTER(ctypes.c_int)()
|
|
||||||
output_len = ctypes.c_size_t()
|
|
||||||
|
|
||||||
output_name = ctypes.c_char_p(bytes("sequences", "utf8"))
|
|
||||||
res = self.ortmtlib.run_session(
|
|
||||||
input_tensors_ctypes,
|
|
||||||
output_name,
|
|
||||||
ctypes.byref(output_ids),
|
|
||||||
ctypes.byref(output_len),
|
|
||||||
)
|
|
||||||
|
|
||||||
output_ids_py = []
|
|
||||||
for i in range(output_len.value):
|
|
||||||
output_ids_py.append(output_ids[i])
|
|
||||||
|
|
||||||
self.ortmtlib.release_ort_tensor(input_ids_tensor)
|
|
||||||
self.ortmtlib.free_ptr(output_ids)
|
|
||||||
return output_ids_py
|
|
||||||
|
|
||||||
def translate(self, content):
|
|
||||||
delimiters = [
|
|
||||||
".",
|
|
||||||
"。",
|
|
||||||
"\n",
|
|
||||||
":",
|
|
||||||
":",
|
|
||||||
"?",
|
|
||||||
"?",
|
|
||||||
"!",
|
|
||||||
"!",
|
|
||||||
"…",
|
|
||||||
"「",
|
|
||||||
"」",
|
|
||||||
]
|
|
||||||
raw_split = [
|
|
||||||
i.strip() for i in re.split("([" + "".join(delimiters) + "])", content)
|
|
||||||
]
|
|
||||||
content_split = [i for i in raw_split if i]
|
|
||||||
translated_list = []
|
|
||||||
i = 0
|
|
||||||
while i < len(content_split):
|
|
||||||
sentence = content_split[i]
|
|
||||||
while i + 1 < len(content_split):
|
|
||||||
if content_split[i + 1] not in delimiters:
|
|
||||||
break
|
|
||||||
i += 1
|
|
||||||
sentence += content_split[i]
|
|
||||||
input_ids_py = self.encode_as_ids(sentence)
|
|
||||||
output_ids_py = self.run_session(input_ids_py)
|
|
||||||
translated_sentence = self.decode_from_ids(output_ids_py)
|
|
||||||
translated_list.append(translated_sentence)
|
|
||||||
i += 1
|
|
||||||
translated = "".join(translated_list)
|
|
||||||
return translated
|
|
||||||
|
|
||||||
def __del__(self):
|
|
||||||
self.ortmtlib.release_ort_tensor(self.max_length_tensor)
|
|
||||||
self.ortmtlib.release_ort_tensor(self.min_length_tensor)
|
|
||||||
self.ortmtlib.release_ort_tensor(self.num_beams_tensor)
|
|
||||||
self.ortmtlib.release_ort_tensor(self.num_return_sequences_tensor)
|
|
||||||
self.ortmtlib.release_ort_tensor(self.length_penalty_tensor)
|
|
||||||
self.ortmtlib.release_ort_tensor(self.repetition_penalty_tensor)
|
|
||||||
self.ortmtlib.release_all_globals()
|
|
@ -1,152 +0,0 @@
|
|||||||
from translator.basetranslator import basetrans
|
|
||||||
import json
|
|
||||||
from myutils.utils import createenglishlangmap
|
|
||||||
from datetime import datetime
|
|
||||||
import hashlib, sys, hmac, time, json
|
|
||||||
|
|
||||||
|
|
||||||
def sign_tc3(secret_key, date, service, str2sign):
|
|
||||||
def _hmac_sha256(key, msg):
|
|
||||||
return hmac.new(key, msg.encode("utf-8"), hashlib.sha256)
|
|
||||||
|
|
||||||
def _get_signature_key(key, date, service):
|
|
||||||
k_date = _hmac_sha256(("TC3" + key).encode("utf-8"), date)
|
|
||||||
k_service = _hmac_sha256(k_date.digest(), service)
|
|
||||||
k_signing = _hmac_sha256(k_service.digest(), "tc3_request")
|
|
||||||
return k_signing.digest()
|
|
||||||
|
|
||||||
signing_key = _get_signature_key(secret_key, date, service)
|
|
||||||
signature = _hmac_sha256(signing_key, str2sign).hexdigest()
|
|
||||||
return signature
|
|
||||||
|
|
||||||
|
|
||||||
def _get_tc3_signature(
|
|
||||||
header, method, canonical_uri, payload, secret_key, date, service, options=None
|
|
||||||
):
|
|
||||||
options = options or {}
|
|
||||||
canonical_querystring = ""
|
|
||||||
|
|
||||||
if sys.version_info[0] == 3 and isinstance(payload, type("")):
|
|
||||||
payload = payload.encode("utf8")
|
|
||||||
|
|
||||||
payload_hash = hashlib.sha256(payload).hexdigest()
|
|
||||||
|
|
||||||
canonical_headers = "content-type:%s\nhost:%s\n" % (
|
|
||||||
header["Content-Type"],
|
|
||||||
header["Host"],
|
|
||||||
)
|
|
||||||
signed_headers = "content-type;host"
|
|
||||||
canonical_request = "%s\n%s\n%s\n%s\n%s\n%s" % (
|
|
||||||
method,
|
|
||||||
canonical_uri,
|
|
||||||
canonical_querystring,
|
|
||||||
canonical_headers,
|
|
||||||
signed_headers,
|
|
||||||
payload_hash,
|
|
||||||
)
|
|
||||||
|
|
||||||
algorithm = "TC3-HMAC-SHA256"
|
|
||||||
credential_scope = date + "/" + service + "/tc3_request"
|
|
||||||
if sys.version_info[0] == 3:
|
|
||||||
canonical_request = canonical_request.encode("utf8")
|
|
||||||
digest = hashlib.sha256(canonical_request).hexdigest()
|
|
||||||
string2sign = "%s\n%s\n%s\n%s" % (
|
|
||||||
algorithm,
|
|
||||||
header["X-TC-Timestamp"],
|
|
||||||
credential_scope,
|
|
||||||
digest,
|
|
||||||
)
|
|
||||||
|
|
||||||
return sign_tc3(secret_key, date, service, string2sign)
|
|
||||||
|
|
||||||
|
|
||||||
def _build_req_with_tc3_signature(key, _id, action, params, options=None):
|
|
||||||
header = {}
|
|
||||||
header["Content-Type"] = "application/json"
|
|
||||||
|
|
||||||
endpoint = "hunyuan.tencentcloudapi.com"
|
|
||||||
timestamp = int(time.time())
|
|
||||||
header["Host"] = endpoint
|
|
||||||
header["X-TC-Action"] = action[0].upper() + action[1:]
|
|
||||||
header["X-TC-RequestClient"] = "SDK_PYTHON_3.0.1193"
|
|
||||||
header["X-TC-Timestamp"] = str(timestamp)
|
|
||||||
header["X-TC-Version"] = "2023-09-01"
|
|
||||||
data = json.dumps(params).encode("utf8")
|
|
||||||
|
|
||||||
service = "hunyuan"
|
|
||||||
date = datetime.utcfromtimestamp(timestamp).strftime("%Y-%m-%d")
|
|
||||||
signature = _get_tc3_signature(
|
|
||||||
header, "POST", "/", data, key, date, service, options
|
|
||||||
)
|
|
||||||
|
|
||||||
auth = (
|
|
||||||
"TC3-HMAC-SHA256 Credential=%s/%s/%s/tc3_request, SignedHeaders=content-type;host, Signature=%s"
|
|
||||||
% (_id, date, service, signature)
|
|
||||||
)
|
|
||||||
header["Authorization"] = auth
|
|
||||||
return header
|
|
||||||
|
|
||||||
|
|
||||||
class TS(basetrans):
|
|
||||||
|
|
||||||
def langmap(self):
|
|
||||||
return createenglishlangmap()
|
|
||||||
|
|
||||||
def __init__(self, typename):
|
|
||||||
self.context = []
|
|
||||||
super().__init__(typename)
|
|
||||||
|
|
||||||
def translate(self, query):
|
|
||||||
self.checkempty(["secret_id", "secret_key"])
|
|
||||||
query = self._gptlike_createquery(
|
|
||||||
query, "use_user_user_prompt", "user_user_prompt"
|
|
||||||
)
|
|
||||||
sysprompt = self._gptlike_createsys("use_user_prompt", "user_prompt")
|
|
||||||
message = [{"Role": "system", "Content": sysprompt}]
|
|
||||||
self._gpt_common_parse_context(message, self.context, self.config["context_num"])
|
|
||||||
message.append({"Role": "user", "Content": query})
|
|
||||||
usingstream = self.config["usingstream"]
|
|
||||||
json_data = {
|
|
||||||
"Model": self.config["model"],
|
|
||||||
"Messages": message,
|
|
||||||
"Stream": usingstream,
|
|
||||||
"TopP": self.config["top_p"],
|
|
||||||
"Temperature": self.config["Temperature"],
|
|
||||||
}
|
|
||||||
headers = _build_req_with_tc3_signature(
|
|
||||||
self.multiapikeycurrent["secret_key"],
|
|
||||||
self.multiapikeycurrent["secret_id"],
|
|
||||||
"ChatCompletions",
|
|
||||||
json_data,
|
|
||||||
)
|
|
||||||
response = self.proxysession.post(
|
|
||||||
"https://hunyuan.tencentcloudapi.com/",
|
|
||||||
headers=headers,
|
|
||||||
data=json.dumps(json_data),
|
|
||||||
stream=usingstream,
|
|
||||||
)
|
|
||||||
|
|
||||||
if usingstream:
|
|
||||||
message = ""
|
|
||||||
for i in response.iter_lines():
|
|
||||||
|
|
||||||
if not i:
|
|
||||||
continue
|
|
||||||
i = i.decode("utf8")[6:]
|
|
||||||
try:
|
|
||||||
mes = json.loads(i)["Choices"][0]["Delta"]["Content"]
|
|
||||||
except:
|
|
||||||
raise Exception(i)
|
|
||||||
yield mes
|
|
||||||
message += mes
|
|
||||||
|
|
||||||
else:
|
|
||||||
try:
|
|
||||||
message = response.json()["Response"]["Choices"][0]["Message"][
|
|
||||||
"Content"
|
|
||||||
]
|
|
||||||
except:
|
|
||||||
raise Exception(response)
|
|
||||||
yield message
|
|
||||||
self.context.append({"Role": "user", "Content": query})
|
|
||||||
self.context.append({"Role": "assistant", "Content": message})
|
|
@ -1396,6 +1396,150 @@
|
|||||||
"use": false,
|
"use": false,
|
||||||
"name": "goo"
|
"name": "goo"
|
||||||
},
|
},
|
||||||
|
"gemini": {
|
||||||
|
"use": false,
|
||||||
|
"name": "Gemini",
|
||||||
|
"args": {
|
||||||
|
"SECRET_KEY": "",
|
||||||
|
"Temperature": 0.3,
|
||||||
|
"BASE_URL": "https://generativelanguage.googleapis.com",
|
||||||
|
"model": "gemini-1.5-flash",
|
||||||
|
"modellistcache": [],
|
||||||
|
"use_custom_prompt": false,
|
||||||
|
"custom_prompt": "",
|
||||||
|
"user_user_prompt": "{sentence}",
|
||||||
|
"use_user_user_prompt": false,
|
||||||
|
"s": "",
|
||||||
|
"s2": ""
|
||||||
|
},
|
||||||
|
"argstype": {
|
||||||
|
"BASE_URL": {
|
||||||
|
"name": "API接口地址",
|
||||||
|
"rank": 0
|
||||||
|
},
|
||||||
|
"user_user_prompt": {
|
||||||
|
"name": "自定义_user message",
|
||||||
|
"refswitch": "use_user_user_prompt",
|
||||||
|
"rank": 5.1
|
||||||
|
},
|
||||||
|
"s": {
|
||||||
|
"type": "split",
|
||||||
|
"rank": 3.5
|
||||||
|
},
|
||||||
|
"s2": {
|
||||||
|
"type": "split",
|
||||||
|
"rank": 5.12
|
||||||
|
},
|
||||||
|
"custom_prompt": {
|
||||||
|
"name": "自定义_system prompt",
|
||||||
|
"type": "multiline",
|
||||||
|
"refswitch": "use_custom_prompt",
|
||||||
|
"rank": 5
|
||||||
|
},
|
||||||
|
"SECRET_KEY": {
|
||||||
|
"rank": 2,
|
||||||
|
"name": "API Key",
|
||||||
|
"type": "textlist"
|
||||||
|
},
|
||||||
|
"model": {
|
||||||
|
"rank": 3,
|
||||||
|
"type": "lineedit_or_combo",
|
||||||
|
"list_function": "list_models",
|
||||||
|
"list_cache": "modellistcache"
|
||||||
|
},
|
||||||
|
"modellistcache": {
|
||||||
|
"type": "list_cache"
|
||||||
|
},
|
||||||
|
"Temperature": {
|
||||||
|
"type": "spin",
|
||||||
|
"min": 0,
|
||||||
|
"max": 1,
|
||||||
|
"step": 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"chatgptlike": {
|
||||||
|
"use": false,
|
||||||
|
"name": "ChatGPT_兼容接口",
|
||||||
|
"args": {
|
||||||
|
"model": "gpt-4o-mini",
|
||||||
|
"modellistcache": [],
|
||||||
|
"API接口地址": "https://api.openai.com",
|
||||||
|
"SECRET_KEY": "",
|
||||||
|
"使用自定义promt": false,
|
||||||
|
"自定义promt": "",
|
||||||
|
"Temperature": 0.3,
|
||||||
|
"top_p": 0.3,
|
||||||
|
"max_tokens": 1024,
|
||||||
|
"frequency_penalty": 0,
|
||||||
|
"user_user_prompt": "{sentence}",
|
||||||
|
"use_user_user_prompt": false,
|
||||||
|
"s": "",
|
||||||
|
"s2": ""
|
||||||
|
},
|
||||||
|
"argstype": {
|
||||||
|
"user_user_prompt": {
|
||||||
|
"name": "自定义_user message",
|
||||||
|
"refswitch": "use_user_user_prompt",
|
||||||
|
"rank": 5.1
|
||||||
|
},
|
||||||
|
"s": {
|
||||||
|
"type": "split",
|
||||||
|
"rank": 2.5
|
||||||
|
},
|
||||||
|
"s2": {
|
||||||
|
"type": "split",
|
||||||
|
"rank": 5.12
|
||||||
|
},
|
||||||
|
"API接口地址": {
|
||||||
|
"rank": 0
|
||||||
|
},
|
||||||
|
"SECRET_KEY": {
|
||||||
|
"rank": 1,
|
||||||
|
"name": "API Key",
|
||||||
|
"type": "textlist"
|
||||||
|
},
|
||||||
|
"model": {
|
||||||
|
"rank": 2,
|
||||||
|
"type": "lineedit_or_combo",
|
||||||
|
"list_function": "list_models",
|
||||||
|
"list_cache": "modellistcache"
|
||||||
|
},
|
||||||
|
"modellistcache": {
|
||||||
|
"type": "list_cache"
|
||||||
|
},
|
||||||
|
"top_p": {
|
||||||
|
"type": "spin",
|
||||||
|
"min": 0,
|
||||||
|
"max": 1,
|
||||||
|
"step": 0.01
|
||||||
|
},
|
||||||
|
"frequency_penalty": {
|
||||||
|
"type": "spin",
|
||||||
|
"min": 0,
|
||||||
|
"max": 2,
|
||||||
|
"step": 0.05
|
||||||
|
},
|
||||||
|
"max_tokens": {
|
||||||
|
"type": "intspin",
|
||||||
|
"min": 1,
|
||||||
|
"max": 1000000,
|
||||||
|
"step": 1
|
||||||
|
},
|
||||||
|
"自定义promt": {
|
||||||
|
"type": "multiline",
|
||||||
|
"refswitch": "使用自定义promt",
|
||||||
|
"name": "自定义_system prompt",
|
||||||
|
"rank": 5
|
||||||
|
},
|
||||||
|
"Temperature": {
|
||||||
|
"type": "spin",
|
||||||
|
"min": 0,
|
||||||
|
"max": 1,
|
||||||
|
"step": 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
},
|
||||||
"mdict": {
|
"mdict": {
|
||||||
"use": false,
|
"use": false,
|
||||||
"name": "MDict",
|
"name": "MDict",
|
||||||
@ -1495,10 +1639,6 @@
|
|||||||
"use": false,
|
"use": false,
|
||||||
"name": "腾讯"
|
"name": "腾讯"
|
||||||
},
|
},
|
||||||
"feishu": {
|
|
||||||
"use": false,
|
|
||||||
"name": "飞书"
|
|
||||||
},
|
|
||||||
"ocrspace": {
|
"ocrspace": {
|
||||||
"use": false,
|
"use": false,
|
||||||
"name": "ocrspace"
|
"name": "ocrspace"
|
||||||
@ -1841,12 +1981,6 @@
|
|||||||
"color": "blue",
|
"color": "blue",
|
||||||
"name": "火山"
|
"name": "火山"
|
||||||
},
|
},
|
||||||
"feishu": {
|
|
||||||
"type": "api",
|
|
||||||
"use": false,
|
|
||||||
"color": "blue",
|
|
||||||
"name": "飞书"
|
|
||||||
},
|
|
||||||
"papago": {
|
"papago": {
|
||||||
"use": false,
|
"use": false,
|
||||||
"color": "blue",
|
"color": "blue",
|
||||||
@ -1937,20 +2071,6 @@
|
|||||||
"type": "pre",
|
"type": "pre",
|
||||||
"color": "blue",
|
"color": "blue",
|
||||||
"name": "实时编辑"
|
"name": "实时编辑"
|
||||||
},
|
|
||||||
"baiduqianfan": {
|
|
||||||
"type": "api",
|
|
||||||
"use": false,
|
|
||||||
"color": "blue",
|
|
||||||
"name": "百度千帆大模型",
|
|
||||||
"is_gpt_like": true
|
|
||||||
},
|
|
||||||
"txhunyuan": {
|
|
||||||
"type": "api",
|
|
||||||
"use": false,
|
|
||||||
"color": "blue",
|
|
||||||
"name": "腾讯混元大模型",
|
|
||||||
"is_gpt_like": true
|
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"ZoomFactor": 1,
|
"ZoomFactor": 1,
|
||||||
|
@ -115,12 +115,6 @@
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"feishu": {
|
|
||||||
"args": {
|
|
||||||
"app_id": "",
|
|
||||||
"app_secret": ""
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"docsumo": {
|
"docsumo": {
|
||||||
"args": {
|
"args": {
|
||||||
"token": ""
|
"token": ""
|
||||||
|
@ -90,20 +90,6 @@
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"feishu": {
|
|
||||||
"args": {
|
|
||||||
"app_id": "",
|
|
||||||
"app_secret": ""
|
|
||||||
},
|
|
||||||
"argstype": {
|
|
||||||
"app_id": {
|
|
||||||
"type": "textlist"
|
|
||||||
},
|
|
||||||
"app_secret": {
|
|
||||||
"type": "textlist"
|
|
||||||
}
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"caiyunapi": {
|
"caiyunapi": {
|
||||||
"args": {
|
"args": {
|
||||||
"Token": ""
|
"Token": ""
|
||||||
@ -277,95 +263,6 @@
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"txhunyuan": {
|
|
||||||
"args": {
|
|
||||||
"secret_id": "",
|
|
||||||
"secret_key": "",
|
|
||||||
"Temperature": 0.3,
|
|
||||||
"top_p": 0.3,
|
|
||||||
"model": "hunyuan-lite",
|
|
||||||
"context_num": 0,
|
|
||||||
"use_user_prompt": false,
|
|
||||||
"user_prompt": "",
|
|
||||||
"user_user_prompt": "{sentence}",
|
|
||||||
"use_user_user_prompt": false,
|
|
||||||
"usingstream": true,
|
|
||||||
"other_args": "{}",
|
|
||||||
"use_other_args": false,
|
|
||||||
"s": ""
|
|
||||||
},
|
|
||||||
"argstype": {
|
|
||||||
"other_args": {
|
|
||||||
"type": "multiline",
|
|
||||||
"refswitch": "use_other_args",
|
|
||||||
"name": "其他参数"
|
|
||||||
},
|
|
||||||
"s": {
|
|
||||||
"type": "split",
|
|
||||||
"rank": 2.5
|
|
||||||
},
|
|
||||||
"secret_id": {
|
|
||||||
"rank": 0,
|
|
||||||
"name": "SecretId",
|
|
||||||
"type": "textlist"
|
|
||||||
},
|
|
||||||
"secret_key": {
|
|
||||||
"rank": 1,
|
|
||||||
"name": "SecretKey",
|
|
||||||
"type": "textlist"
|
|
||||||
},
|
|
||||||
"model": {
|
|
||||||
"rank": 2,
|
|
||||||
"type": "lineedit_or_combo",
|
|
||||||
"list": [
|
|
||||||
"hunyuan-lite",
|
|
||||||
"hunyuan-turbo",
|
|
||||||
"hunyuan-pro",
|
|
||||||
"hunyuan-standard",
|
|
||||||
"hunyuan-standard-256k",
|
|
||||||
"hunyuan-role",
|
|
||||||
"hunyuan-functioncall",
|
|
||||||
"hunyuan-code"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"top_p": {
|
|
||||||
"type": "spin",
|
|
||||||
"min": 0,
|
|
||||||
"max": 1,
|
|
||||||
"step": 0.01
|
|
||||||
},
|
|
||||||
"usingstream": {
|
|
||||||
"name": "流式输出",
|
|
||||||
"type": "switch",
|
|
||||||
"rank": 3
|
|
||||||
},
|
|
||||||
"user_prompt": {
|
|
||||||
"name": "自定义_system prompt",
|
|
||||||
"type": "multiline",
|
|
||||||
"refswitch": "use_user_prompt",
|
|
||||||
"rank": 5
|
|
||||||
},
|
|
||||||
"user_user_prompt": {
|
|
||||||
"name": "自定义_user message",
|
|
||||||
"refswitch": "use_user_user_prompt",
|
|
||||||
"rank": 5.1
|
|
||||||
},
|
|
||||||
"context_num": {
|
|
||||||
"name": "附带上下文个数",
|
|
||||||
"type": "intspin",
|
|
||||||
"min": 0,
|
|
||||||
"max": 99999,
|
|
||||||
"step": 1,
|
|
||||||
"rank": 4.9
|
|
||||||
},
|
|
||||||
"Temperature": {
|
|
||||||
"type": "spin",
|
|
||||||
"min": 0,
|
|
||||||
"max": 1,
|
|
||||||
"step": 0.1
|
|
||||||
}
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"claude": {
|
"claude": {
|
||||||
"args": {
|
"args": {
|
||||||
"BASE_URL": "https://api.anthropic.com",
|
"BASE_URL": "https://api.anthropic.com",
|
||||||
@ -379,8 +276,6 @@
|
|||||||
"流式输出": true,
|
"流式输出": true,
|
||||||
"user_user_prompt": "{sentence}",
|
"user_user_prompt": "{sentence}",
|
||||||
"use_user_user_prompt": false,
|
"use_user_user_prompt": false,
|
||||||
"other_args": "{}",
|
|
||||||
"use_other_args": false,
|
|
||||||
"s": "",
|
"s": "",
|
||||||
"s2": "",
|
"s2": "",
|
||||||
"prefill": "",
|
"prefill": "",
|
||||||
@ -394,11 +289,6 @@
|
|||||||
"prefill_use": {
|
"prefill_use": {
|
||||||
"type": "switch"
|
"type": "switch"
|
||||||
},
|
},
|
||||||
"other_args": {
|
|
||||||
"type": "multiline",
|
|
||||||
"refswitch": "use_other_args",
|
|
||||||
"name": "其他参数"
|
|
||||||
},
|
|
||||||
"user_user_prompt": {
|
"user_user_prompt": {
|
||||||
"name": "自定义_user message",
|
"name": "自定义_user message",
|
||||||
"refswitch": "use_user_user_prompt",
|
"refswitch": "use_user_user_prompt",
|
||||||
@ -577,110 +467,6 @@
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"baiduqianfan": {
|
|
||||||
"args": {
|
|
||||||
"model": "ernie-4.0-8k",
|
|
||||||
"context_num": 0,
|
|
||||||
"API_KEY": "",
|
|
||||||
"SECRET_KEY": "",
|
|
||||||
"use_user_prompt": false,
|
|
||||||
"user_prompt": "",
|
|
||||||
"usingstream": true,
|
|
||||||
"Temperature": 0.3,
|
|
||||||
"top_p": 0.3,
|
|
||||||
"max_tokens": 1024,
|
|
||||||
"frequency_penalty": 0,
|
|
||||||
"user_user_prompt": "{sentence}",
|
|
||||||
"use_user_user_prompt": false,
|
|
||||||
"other_args": "{}",
|
|
||||||
"use_other_args": false,
|
|
||||||
"s": ""
|
|
||||||
},
|
|
||||||
"argstype": {
|
|
||||||
"other_args": {
|
|
||||||
"type": "multiline",
|
|
||||||
"refswitch": "use_other_args",
|
|
||||||
"name": "其他参数"
|
|
||||||
},
|
|
||||||
"user_user_prompt": {
|
|
||||||
"name": "自定义_user message",
|
|
||||||
"refswitch": "use_user_user_prompt",
|
|
||||||
"rank": 5.1
|
|
||||||
},
|
|
||||||
"s": {
|
|
||||||
"type": "split",
|
|
||||||
"rank": 2.5
|
|
||||||
},
|
|
||||||
"API_KEY": {
|
|
||||||
"rank": 0,
|
|
||||||
"name": "API Key",
|
|
||||||
"type": "textlist"
|
|
||||||
},
|
|
||||||
"SECRET_KEY": {
|
|
||||||
"rank": 1,
|
|
||||||
"name": "Secret Key",
|
|
||||||
"type": "textlist"
|
|
||||||
},
|
|
||||||
"model": {
|
|
||||||
"rank": 2,
|
|
||||||
"type": "lineedit_or_combo",
|
|
||||||
"list": [
|
|
||||||
"ernie-4.0-8k",
|
|
||||||
"ernie-4.0-turbo-8k",
|
|
||||||
"ernie-3.5-128k",
|
|
||||||
"ernie-3.5-8k",
|
|
||||||
"ernie-speed-pro-128k",
|
|
||||||
"ernie-speed-128k",
|
|
||||||
"ernie-speed-8k",
|
|
||||||
"ernie-lite-8k",
|
|
||||||
"ernie-tiny-8k"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"top_p": {
|
|
||||||
"type": "spin",
|
|
||||||
"min": 0,
|
|
||||||
"max": 1,
|
|
||||||
"step": 0.01
|
|
||||||
},
|
|
||||||
"frequency_penalty": {
|
|
||||||
"type": "spin",
|
|
||||||
"min": 0,
|
|
||||||
"max": 2,
|
|
||||||
"step": 0.05
|
|
||||||
},
|
|
||||||
"max_tokens": {
|
|
||||||
"type": "intspin",
|
|
||||||
"min": 1,
|
|
||||||
"max": 1000000,
|
|
||||||
"step": 1
|
|
||||||
},
|
|
||||||
"user_prompt": {
|
|
||||||
"type": "multiline",
|
|
||||||
"name": "自定义_system prompt",
|
|
||||||
"refswitch": "use_user_prompt",
|
|
||||||
"rank": 5
|
|
||||||
},
|
|
||||||
"usingstream": {
|
|
||||||
"name": "流式输出",
|
|
||||||
"type": "switch",
|
|
||||||
"rank": 3
|
|
||||||
},
|
|
||||||
"context_num": {
|
|
||||||
"name": "附带上下文个数",
|
|
||||||
"type": "intspin",
|
|
||||||
"min": 0,
|
|
||||||
"max": 99999,
|
|
||||||
"step": 1,
|
|
||||||
"rank": 4.9
|
|
||||||
},
|
|
||||||
"Temperature": {
|
|
||||||
"type": "spin",
|
|
||||||
"min": 0,
|
|
||||||
"max": 1,
|
|
||||||
"step": 0.1
|
|
||||||
}
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"cohere": {
|
"cohere": {
|
||||||
"args": {
|
"args": {
|
||||||
"SECRET_KEY": "",
|
"SECRET_KEY": "",
|
||||||
@ -693,8 +479,6 @@
|
|||||||
"流式输出": true,
|
"流式输出": true,
|
||||||
"use_user_user_prompt": false,
|
"use_user_user_prompt": false,
|
||||||
"user_user_prompt": "{sentence}",
|
"user_user_prompt": "{sentence}",
|
||||||
"other_args": "{}",
|
|
||||||
"use_other_args": false,
|
|
||||||
"s": "",
|
"s": "",
|
||||||
"s2": "",
|
"s2": "",
|
||||||
"prefill": "",
|
"prefill": "",
|
||||||
@ -712,11 +496,6 @@
|
|||||||
"type": "split",
|
"type": "split",
|
||||||
"rank": 5.12
|
"rank": 5.12
|
||||||
},
|
},
|
||||||
"other_args": {
|
|
||||||
"type": "multiline",
|
|
||||||
"refswitch": "use_other_args",
|
|
||||||
"name": "其他参数"
|
|
||||||
},
|
|
||||||
"user_user_prompt": {
|
"user_user_prompt": {
|
||||||
"name": "自定义_user message",
|
"name": "自定义_user message",
|
||||||
"refswitch": "use_user_user_prompt",
|
"refswitch": "use_user_user_prompt",
|
||||||
@ -979,8 +758,6 @@
|
|||||||
"custom_prompt": "",
|
"custom_prompt": "",
|
||||||
"user_user_prompt": "{sentence}",
|
"user_user_prompt": "{sentence}",
|
||||||
"use_user_user_prompt": false,
|
"use_user_user_prompt": false,
|
||||||
"other_args": "{}",
|
|
||||||
"use_other_args": false,
|
|
||||||
"s": "",
|
"s": "",
|
||||||
"s2": "",
|
"s2": "",
|
||||||
"usingstream": true,
|
"usingstream": true,
|
||||||
@ -995,11 +772,6 @@
|
|||||||
"prefill_use": {
|
"prefill_use": {
|
||||||
"type": "switch"
|
"type": "switch"
|
||||||
},
|
},
|
||||||
"other_args": {
|
|
||||||
"type": "multiline",
|
|
||||||
"refswitch": "use_other_args",
|
|
||||||
"name": "其他参数"
|
|
||||||
},
|
|
||||||
"BASE_URL": {
|
"BASE_URL": {
|
||||||
"name": "API接口地址",
|
"name": "API接口地址",
|
||||||
"rank": 0
|
"rank": 0
|
||||||
@ -1058,60 +830,6 @@
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"ort_sp": {
|
|
||||||
"args": {
|
|
||||||
"path": "",
|
|
||||||
"最大生成长度": 128,
|
|
||||||
"最小生成长度": 1,
|
|
||||||
"柱搜索数": 8,
|
|
||||||
"序列数": 1,
|
|
||||||
"过长惩罚": 1.4,
|
|
||||||
"重复惩罚": 1.7
|
|
||||||
},
|
|
||||||
"argstype": {
|
|
||||||
"path": {
|
|
||||||
"name": "路径",
|
|
||||||
"type": "file",
|
|
||||||
"dir": true
|
|
||||||
},
|
|
||||||
"序列数": {
|
|
||||||
"type": "intspin",
|
|
||||||
"min": 0,
|
|
||||||
"max": 10000,
|
|
||||||
"step": 1
|
|
||||||
},
|
|
||||||
"最大生成长度": {
|
|
||||||
"type": "intspin",
|
|
||||||
"min": 0,
|
|
||||||
"max": 10000,
|
|
||||||
"step": 1
|
|
||||||
},
|
|
||||||
"最小生成长度": {
|
|
||||||
"type": "intspin",
|
|
||||||
"min": 0,
|
|
||||||
"max": 10000,
|
|
||||||
"step": 1
|
|
||||||
},
|
|
||||||
"柱搜索数": {
|
|
||||||
"type": "intspin",
|
|
||||||
"min": 0,
|
|
||||||
"max": 10000,
|
|
||||||
"step": 1
|
|
||||||
},
|
|
||||||
"过长惩罚": {
|
|
||||||
"type": "spin",
|
|
||||||
"min": 0,
|
|
||||||
"max": 10000,
|
|
||||||
"step": 0.1
|
|
||||||
},
|
|
||||||
"重复惩罚": {
|
|
||||||
"type": "spin",
|
|
||||||
"min": 0,
|
|
||||||
"max": 10000,
|
|
||||||
"step": 0.1
|
|
||||||
}
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"sakura": {
|
"sakura": {
|
||||||
"args": {
|
"args": {
|
||||||
"API接口地址": "http://127.0.0.1:8080/",
|
"API接口地址": "http://127.0.0.1:8080/",
|
||||||
|
@ -399,12 +399,6 @@
|
|||||||
"使用翻译缓存": "استخدام ذاكرة التخزين المؤقت الترجمة",
|
"使用翻译缓存": "استخدام ذاكرة التخزين المؤقت الترجمة",
|
||||||
"新": "جديد .",
|
"新": "جديد .",
|
||||||
"缩放系数": "معامل التكبير",
|
"缩放系数": "معامل التكبير",
|
||||||
"最大生成长度": "أقصى طول الجيل",
|
|
||||||
"最小生成长度": "الحد الأدنى من طول الجيل",
|
|
||||||
"柱搜索数": "العمود رقم البحث",
|
|
||||||
"序列数": "رقم التسلسل",
|
|
||||||
"过长惩罚": "عقوبة طويلة",
|
|
||||||
"重复惩罚": "تكرار العقوبة",
|
|
||||||
"显示日语注音": "عرض صوتي ياباني",
|
"显示日语注音": "عرض صوتي ياباني",
|
||||||
"注音颜色": "لون صوتي",
|
"注音颜色": "لون صوتي",
|
||||||
"平假名": "هيراغانا",
|
"平假名": "هيراغانا",
|
||||||
|
@ -399,12 +399,6 @@
|
|||||||
"使用翻译缓存": "使用翻譯快取",
|
"使用翻译缓存": "使用翻譯快取",
|
||||||
"新": "新",
|
"新": "新",
|
||||||
"缩放系数": "縮放係數",
|
"缩放系数": "縮放係數",
|
||||||
"最大生成长度": "最大生成長度",
|
|
||||||
"最小生成长度": "最小生成長度",
|
|
||||||
"柱搜索数": "柱搜尋數",
|
|
||||||
"序列数": "序列數",
|
|
||||||
"过长惩罚": "過長懲罰",
|
|
||||||
"重复惩罚": "重複懲罰",
|
|
||||||
"显示日语注音": "顯示日語注音",
|
"显示日语注音": "顯示日語注音",
|
||||||
"注音颜色": "注音顏色",
|
"注音颜色": "注音顏色",
|
||||||
"平假名": "平假名",
|
"平假名": "平假名",
|
||||||
|
@ -405,12 +405,6 @@
|
|||||||
"使用翻译缓存": "Použít mezipaměť pro překlad",
|
"使用翻译缓存": "Použít mezipaměť pro překlad",
|
||||||
"新": "nový",
|
"新": "nový",
|
||||||
"缩放系数": "Skalační faktor",
|
"缩放系数": "Skalační faktor",
|
||||||
"最大生成长度": "Maximální generovaná délka",
|
|
||||||
"最小生成长度": "Minimální generovaná délka",
|
|
||||||
"柱搜索数": "Počet vyhledávání sloupců",
|
|
||||||
"序列数": "Počet sekvencí",
|
|
||||||
"过长惩罚": "Nadměrný trest",
|
|
||||||
"重复惩罚": "Opakovaný trest",
|
|
||||||
"语言包": "Jazykový balíček",
|
"语言包": "Jazykový balíček",
|
||||||
"显示日语注音": "Zobrazit japonské fonetické anotace",
|
"显示日语注音": "Zobrazit japonské fonetické anotace",
|
||||||
"注音颜色": "Fonetická barva",
|
"注音颜色": "Fonetická barva",
|
||||||
|
@ -405,12 +405,6 @@
|
|||||||
"使用翻译缓存": "Übersetzungscache verwenden",
|
"使用翻译缓存": "Übersetzungscache verwenden",
|
||||||
"新": "neu",
|
"新": "neu",
|
||||||
"缩放系数": "Skalierungsfaktor",
|
"缩放系数": "Skalierungsfaktor",
|
||||||
"最大生成长度": "Maximale erzeugte Länge",
|
|
||||||
"最小生成长度": "Minimale generierte Länge",
|
|
||||||
"柱搜索数": "Anzahl der Spaltensuche",
|
|
||||||
"序列数": "Anzahl der Sequenzen",
|
|
||||||
"过长惩罚": "Übermäßige Bestrafung",
|
|
||||||
"重复惩罚": "Wiederholte Strafe",
|
|
||||||
"语言包": "Sprachpaket",
|
"语言包": "Sprachpaket",
|
||||||
"显示日语注音": "Japanische phonetische Anmerkungen anzeigen",
|
"显示日语注音": "Japanische phonetische Anmerkungen anzeigen",
|
||||||
"注音颜色": "Phonetische Farbe",
|
"注音颜色": "Phonetische Farbe",
|
||||||
|
@ -398,12 +398,6 @@
|
|||||||
"使用翻译缓存": "Use Translation Cache",
|
"使用翻译缓存": "Use Translation Cache",
|
||||||
"新": "New",
|
"新": "New",
|
||||||
"缩放系数": "Scale Factor",
|
"缩放系数": "Scale Factor",
|
||||||
"最大生成长度": "Max Generation Length",
|
|
||||||
"最小生成长度": "Min Generation Length",
|
|
||||||
"柱搜索数": "Beam Search Number",
|
|
||||||
"序列数": "Sequence Number",
|
|
||||||
"过长惩罚": "Length Penalty",
|
|
||||||
"重复惩罚": "Repetition Penalty",
|
|
||||||
"显示日语注音": "Show Furigana",
|
"显示日语注音": "Show Furigana",
|
||||||
"注音颜色": "Furigana Color",
|
"注音颜色": "Furigana Color",
|
||||||
"平假名": "ひらがな (Hiragana)",
|
"平假名": "ひらがな (Hiragana)",
|
||||||
|
@ -399,12 +399,6 @@
|
|||||||
"使用翻译缓存": "Usar caché de traducción",
|
"使用翻译缓存": "Usar caché de traducción",
|
||||||
"新": "Nuevo",
|
"新": "Nuevo",
|
||||||
"缩放系数": "Coeficiente de escala",
|
"缩放系数": "Coeficiente de escala",
|
||||||
"最大生成长度": "Longitud máxima generada",
|
|
||||||
"最小生成长度": "Longitud mínima de generación",
|
|
||||||
"柱搜索数": "Número de búsquedas de columnas",
|
|
||||||
"序列数": "Número de secuencias",
|
|
||||||
"过长惩罚": "Castigo excesivo",
|
|
||||||
"重复惩罚": "Repetir el castigo",
|
|
||||||
"显示日语注音": "Muestra la fonética japonesa",
|
"显示日语注音": "Muestra la fonética japonesa",
|
||||||
"注音颜色": "Color de la nota",
|
"注音颜色": "Color de la nota",
|
||||||
"平假名": "Hirayama",
|
"平假名": "Hirayama",
|
||||||
|
@ -399,12 +399,6 @@
|
|||||||
"使用翻译缓存": "Utiliser le cache de traduction",
|
"使用翻译缓存": "Utiliser le cache de traduction",
|
||||||
"新": "Nouveau",
|
"新": "Nouveau",
|
||||||
"缩放系数": "Facteur de zoom",
|
"缩放系数": "Facteur de zoom",
|
||||||
"最大生成长度": "Longueur maximale de génération",
|
|
||||||
"最小生成长度": "Longueur minimale de génération",
|
|
||||||
"柱搜索数": "Nombre de recherches de colonnes",
|
|
||||||
"序列数": "Nombre de séquences",
|
|
||||||
"过长惩罚": "Pénalité trop longue",
|
|
||||||
"重复惩罚": "Punition répétée",
|
|
||||||
"显示日语注音": "Afficher les notes en japonais",
|
"显示日语注音": "Afficher les notes en japonais",
|
||||||
"注音颜色": "Couleur d'accent",
|
"注音颜色": "Couleur d'accent",
|
||||||
"平假名": "Hiragana",
|
"平假名": "Hiragana",
|
||||||
|
@ -399,12 +399,6 @@
|
|||||||
"使用翻译缓存": "Uso della cache delle traduzioni",
|
"使用翻译缓存": "Uso della cache delle traduzioni",
|
||||||
"新": "nuovo",
|
"新": "nuovo",
|
||||||
"缩放系数": "Fattore di scala",
|
"缩放系数": "Fattore di scala",
|
||||||
"最大生成长度": "Lunghezza massima di generazione",
|
|
||||||
"最小生成长度": "Lunghezza minima di generazione",
|
|
||||||
"柱搜索数": "Numero di ricerche in colonna",
|
|
||||||
"序列数": "Numero di sequenze",
|
|
||||||
"过长惩罚": "Pena eccessiva",
|
|
||||||
"重复惩罚": "Pena ripetitiva",
|
|
||||||
"显示日语注音": "Mostra pinyin giapponese",
|
"显示日语注音": "Mostra pinyin giapponese",
|
||||||
"注音颜色": "Colore pinyin",
|
"注音颜色": "Colore pinyin",
|
||||||
"平假名": "Hiragana",
|
"平假名": "Hiragana",
|
||||||
|
@ -399,12 +399,6 @@
|
|||||||
"使用翻译缓存": "翻訳キャッシュの使用",
|
"使用翻译缓存": "翻訳キャッシュの使用",
|
||||||
"新": "新規",
|
"新": "新規",
|
||||||
"缩放系数": "スケーリング係数",
|
"缩放系数": "スケーリング係数",
|
||||||
"最大生成长度": "最大生成長さ",
|
|
||||||
"最小生成长度": "最小生成長さ",
|
|
||||||
"柱搜索数": "カラムサーチ",
|
|
||||||
"序列数": "シーケンス数",
|
|
||||||
"过长惩罚": "長すぎる罰",
|
|
||||||
"重复惩罚": "繰り返し罰する.",
|
|
||||||
"显示日语注音": "日本語のルビを表示",
|
"显示日语注音": "日本語のルビを表示",
|
||||||
"注音颜色": "ルビの色",
|
"注音颜色": "ルビの色",
|
||||||
"平假名": "ひらがな",
|
"平假名": "ひらがな",
|
||||||
|
@ -399,12 +399,6 @@
|
|||||||
"使用翻译缓存": "번역 캐시 사용",
|
"使用翻译缓存": "번역 캐시 사용",
|
||||||
"新": "새",
|
"新": "새",
|
||||||
"缩放系数": "배율 계수",
|
"缩放系数": "배율 계수",
|
||||||
"最大生成长度": "최대 생성 길이",
|
|
||||||
"最小生成长度": "최소 생성 길이",
|
|
||||||
"柱搜索数": "원통 검색 수",
|
|
||||||
"序列数": "시퀀스 수",
|
|
||||||
"过长惩罚": "과도한 처벌",
|
|
||||||
"重复惩罚": "반복 처벌",
|
|
||||||
"显示日语注音": "일본어 메모 표시",
|
"显示日语注音": "일본어 메모 표시",
|
||||||
"注音颜色": "주음 색상",
|
"注音颜色": "주음 색상",
|
||||||
"平假名": "히라가나",
|
"平假名": "히라가나",
|
||||||
|
@ -405,12 +405,6 @@
|
|||||||
"使用翻译缓存": "Vertaalcache gebruiken",
|
"使用翻译缓存": "Vertaalcache gebruiken",
|
||||||
"新": "nieuw",
|
"新": "nieuw",
|
||||||
"缩放系数": "Schaalfactor",
|
"缩放系数": "Schaalfactor",
|
||||||
"最大生成长度": "Maximale gegenereerde lengte",
|
|
||||||
"最小生成长度": "Minimale gegenereerde lengte",
|
|
||||||
"柱搜索数": "Aantal kolommen zoeken",
|
|
||||||
"序列数": "Aantal sequenties",
|
|
||||||
"过长惩罚": "Overmatige straf",
|
|
||||||
"重复惩罚": "Herhaalde straf",
|
|
||||||
"语言包": "Taalpakket",
|
"语言包": "Taalpakket",
|
||||||
"显示日语注音": "Japanse fonetische annotaties tonen",
|
"显示日语注音": "Japanse fonetische annotaties tonen",
|
||||||
"注音颜色": "Fonetische kleur",
|
"注音颜色": "Fonetische kleur",
|
||||||
|
@ -399,12 +399,6 @@
|
|||||||
"使用翻译缓存": "Korzystanie z pamięci podręcznej tłumaczeń",
|
"使用翻译缓存": "Korzystanie z pamięci podręcznej tłumaczeń",
|
||||||
"新": "nowy",
|
"新": "nowy",
|
||||||
"缩放系数": "Współczynnik skalowania",
|
"缩放系数": "Współczynnik skalowania",
|
||||||
"最大生成长度": "Maksymalna długość generacji",
|
|
||||||
"最小生成长度": "Minimalna długość generacji",
|
|
||||||
"柱搜索数": "Liczba wyszukiwania kolumn",
|
|
||||||
"序列数": "Liczba sekwencji",
|
|
||||||
"过长惩罚": "Nadmierna kara",
|
|
||||||
"重复惩罚": "Kary powtarzające się",
|
|
||||||
"显示日语注音": "Wyświetl japoński pinyin",
|
"显示日语注音": "Wyświetl japoński pinyin",
|
||||||
"注音颜色": "Kolor pinyin",
|
"注音颜色": "Kolor pinyin",
|
||||||
"平假名": "HiraganaName",
|
"平假名": "HiraganaName",
|
||||||
|
@ -405,12 +405,6 @@
|
|||||||
"使用翻译缓存": "Usar a 'cache' de tradução",
|
"使用翻译缓存": "Usar a 'cache' de tradução",
|
||||||
"新": "novo",
|
"新": "novo",
|
||||||
"缩放系数": "Fator de escala",
|
"缩放系数": "Fator de escala",
|
||||||
"最大生成长度": "Comprimento máximo gerado",
|
|
||||||
"最小生成长度": "Comprimento mínimo gerado",
|
|
||||||
"柱搜索数": "Contagem de pesquisas em colunas",
|
|
||||||
"序列数": "Número de sequências",
|
|
||||||
"过长惩罚": "Pena excessiva",
|
|
||||||
"重复惩罚": "Repetição da punição",
|
|
||||||
"语言包": "Pacote de Idiomas",
|
"语言包": "Pacote de Idiomas",
|
||||||
"显示日语注音": "Mostrar as anotações fonéticas japonesas",
|
"显示日语注音": "Mostrar as anotações fonéticas japonesas",
|
||||||
"注音颜色": "Cor fonética",
|
"注音颜色": "Cor fonética",
|
||||||
|
@ -399,12 +399,6 @@
|
|||||||
"使用翻译缓存": "Использовать кэш перевода",
|
"使用翻译缓存": "Использовать кэш перевода",
|
||||||
"新": "Новый",
|
"新": "Новый",
|
||||||
"缩放系数": "Коэффициент масштабирования",
|
"缩放系数": "Коэффициент масштабирования",
|
||||||
"最大生成长度": "Максимальная длина генерации",
|
|
||||||
"最小生成长度": "Минимальная длина генерации",
|
|
||||||
"柱搜索数": "Количество поисковых столбцов",
|
|
||||||
"序列数": "Количество последовательностей",
|
|
||||||
"过长惩罚": "Слишком длительное наказание",
|
|
||||||
"重复惩罚": "Повторное наказание",
|
|
||||||
"显示日语注音": "Показать японское произношение",
|
"显示日语注音": "Показать японское произношение",
|
||||||
"注音颜色": "Цвет звука",
|
"注音颜色": "Цвет звука",
|
||||||
"平假名": "Псевдоним",
|
"平假名": "Псевдоним",
|
||||||
|
@ -405,12 +405,6 @@
|
|||||||
"使用翻译缓存": "Använd översättningskamera",
|
"使用翻译缓存": "Använd översättningskamera",
|
||||||
"新": "ny",
|
"新": "ny",
|
||||||
"缩放系数": "Skalningsfaktor",
|
"缩放系数": "Skalningsfaktor",
|
||||||
"最大生成长度": "Maximal genererad längd",
|
|
||||||
"最小生成长度": "Minsta genererad längd",
|
|
||||||
"柱搜索数": "Antal kolumnsökningar",
|
|
||||||
"序列数": "Antal sekvenser",
|
|
||||||
"过长惩罚": "Överdrivet straff",
|
|
||||||
"重复惩罚": "Upprepat straff",
|
|
||||||
"语言包": "Språkpaket",
|
"语言包": "Språkpaket",
|
||||||
"显示日语注音": "Visa japanska fonetiska anteckningar",
|
"显示日语注音": "Visa japanska fonetiska anteckningar",
|
||||||
"注音颜色": "Fonetisk färg",
|
"注音颜色": "Fonetisk färg",
|
||||||
|
@ -399,12 +399,6 @@
|
|||||||
"使用翻译缓存": "ใช้แคชการแปล",
|
"使用翻译缓存": "ใช้แคชการแปล",
|
||||||
"新": "ใหม่",
|
"新": "ใหม่",
|
||||||
"缩放系数": "ค่าสัมประสิทธิ์การซูม",
|
"缩放系数": "ค่าสัมประสิทธิ์การซูม",
|
||||||
"最大生成长度": "ความยาวสูงสุด",
|
|
||||||
"最小生成长度": "ความยาวการสร้างขั้นต่ำ",
|
|
||||||
"柱搜索数": "จำนวนการค้นหาคอลัมน์",
|
|
||||||
"序列数": "จำนวนลำดับ",
|
|
||||||
"过长惩罚": "การลงโทษที่ยาวนานเกินไป",
|
|
||||||
"重复惩罚": "การลงโทษซ้ำ",
|
|
||||||
"显示日语注音": "แสดงหมายเหตุภาษาญี่ปุ่น",
|
"显示日语注音": "แสดงหมายเหตุภาษาญี่ปุ่น",
|
||||||
"注音颜色": "สี Injection",
|
"注音颜色": "สี Injection",
|
||||||
"平假名": "ฮิรางานะ",
|
"平假名": "ฮิรางานะ",
|
||||||
|
@ -399,12 +399,6 @@
|
|||||||
"使用翻译缓存": "Çeviri Cache kullanılıyor",
|
"使用翻译缓存": "Çeviri Cache kullanılıyor",
|
||||||
"新": "Yeni",
|
"新": "Yeni",
|
||||||
"缩放系数": "Scale factor",
|
"缩放系数": "Scale factor",
|
||||||
"最大生成长度": "En yüksek nesil uzunluğu",
|
|
||||||
"最小生成长度": "En az nesil uzunluğu",
|
|
||||||
"柱搜索数": "Sütun aramalarının sayısı",
|
|
||||||
"序列数": "Sezenler sayısı",
|
|
||||||
"过长惩罚": "Çok fazla ceza",
|
|
||||||
"重复惩罚": "Tekrar cezalandırıcı",
|
|
||||||
"显示日语注音": "Display Japanese Pinyin",
|
"显示日语注音": "Display Japanese Pinyin",
|
||||||
"注音颜色": "Pinyin rengi",
|
"注音颜色": "Pinyin rengi",
|
||||||
"平假名": "HiraganaKCharselect unicode block name",
|
"平假名": "HiraganaKCharselect unicode block name",
|
||||||
|
@ -399,12 +399,6 @@
|
|||||||
"使用翻译缓存": "Використання кешу перекладу",
|
"使用翻译缓存": "Використання кешу перекладу",
|
||||||
"新": "новий",
|
"新": "новий",
|
||||||
"缩放系数": "Фактор масштабу",
|
"缩放系数": "Фактор масштабу",
|
||||||
"最大生成长度": "Максимальна довжина створення",
|
|
||||||
"最小生成长度": "Мінімальна довжина створення",
|
|
||||||
"柱搜索数": "Кількість пошуків стовпчиків",
|
|
||||||
"序列数": "Кількість послідовностей",
|
|
||||||
"过长惩罚": "Великий покарання",
|
|
||||||
"重复惩罚": "Повторює покарання",
|
|
||||||
"显示日语注音": "Показувати японський пінін",
|
"显示日语注音": "Показувати японський пінін",
|
||||||
"注音颜色": "Колір пініна",
|
"注音颜色": "Колір пініна",
|
||||||
"平假名": "Гіраганаworld. kgm",
|
"平假名": "Гіраганаworld. kgm",
|
||||||
|
@ -399,12 +399,6 @@
|
|||||||
"使用翻译缓存": "Sử dụng Translation Cache",
|
"使用翻译缓存": "Sử dụng Translation Cache",
|
||||||
"新": "Mới",
|
"新": "Mới",
|
||||||
"缩放系数": "Hệ số thu phóng",
|
"缩放系数": "Hệ số thu phóng",
|
||||||
"最大生成长度": "Chiều dài tạo tối đa",
|
|
||||||
"最小生成长度": "Chiều dài tạo tối thiểu",
|
|
||||||
"柱搜索数": "Số lượng tìm kiếm cột",
|
|
||||||
"序列数": "Số dãy",
|
|
||||||
"过长惩罚": "Hình phạt quá dài",
|
|
||||||
"重复惩罚": "Hình phạt lặp lại",
|
|
||||||
"显示日语注音": "Hiện chú thích tiếng Nhật",
|
"显示日语注音": "Hiện chú thích tiếng Nhật",
|
||||||
"注音颜色": "Màu chú thích",
|
"注音颜色": "Màu chú thích",
|
||||||
"平假名": "Name",
|
"平假名": "Name",
|
||||||
|
@ -414,12 +414,6 @@
|
|||||||
"使用翻译缓存": "",
|
"使用翻译缓存": "",
|
||||||
"新": "",
|
"新": "",
|
||||||
"缩放系数": "",
|
"缩放系数": "",
|
||||||
"最大生成长度": "",
|
|
||||||
"最小生成长度": "",
|
|
||||||
"柱搜索数": "",
|
|
||||||
"序列数": "",
|
|
||||||
"过长惩罚": "",
|
|
||||||
"重复惩罚": "",
|
|
||||||
"语言包": "",
|
"语言包": "",
|
||||||
"显示日语注音": "",
|
"显示日语注音": "",
|
||||||
"注音颜色": "",
|
"注音颜色": "",
|
||||||
|
Loading…
x
Reference in New Issue
Block a user