mirror of
https://github.com/Detanup01/gbe_fork.git
synced 2024-11-30 14:25:36 +08:00
716 lines
39 KiB
C
716 lines
39 KiB
C
|
|
||
|
#ifndef ISTEAMNETWORKINGSOCKETS008
|
||
|
#define ISTEAMNETWORKINGSOCKETS008
|
||
|
|
||
|
|
||
|
class ISteamNetworkingSockets008
|
||
|
{
|
||
|
public:
|
||
|
|
||
|
/// Creates a "server" socket that listens for clients to connect to by
|
||
|
/// calling ConnectByIPAddress, over ordinary UDP (IPv4 or IPv6)
|
||
|
///
|
||
|
/// You must select a specific local port to listen on and set it
|
||
|
/// the port field of the local address.
|
||
|
///
|
||
|
/// Usually you will set the IP portion of the address to zero (SteamNetworkingIPAddr::Clear()).
|
||
|
/// This means that you will not bind to any particular local interface (i.e. the same
|
||
|
/// as INADDR_ANY in plain socket code). Furthermore, if possible the socket will be bound
|
||
|
/// in "dual stack" mode, which means that it can accept both IPv4 and IPv6 client connections.
|
||
|
/// If you really do wish to bind a particular interface, then set the local address to the
|
||
|
/// appropriate IPv4 or IPv6 IP.
|
||
|
///
|
||
|
/// If you need to set any initial config options, pass them here. See
|
||
|
/// SteamNetworkingConfigValue_t for more about why this is preferable to
|
||
|
/// setting the options "immediately" after creation.
|
||
|
///
|
||
|
/// When a client attempts to connect, a SteamNetConnectionStatusChangedCallback_t
|
||
|
/// will be posted. The connection will be in the connecting state.
|
||
|
virtual HSteamListenSocket CreateListenSocketIP( const SteamNetworkingIPAddr &localAddress, int nOptions, const SteamNetworkingConfigValue_t *pOptions ) = 0;
|
||
|
|
||
|
/// Creates a connection and begins talking to a "server" over UDP at the
|
||
|
/// given IPv4 or IPv6 address. The remote host must be listening with a
|
||
|
/// matching call to CreateListenSocketIP on the specified port.
|
||
|
///
|
||
|
/// A SteamNetConnectionStatusChangedCallback_t callback will be triggered when we start
|
||
|
/// connecting, and then another one on either timeout or successful connection.
|
||
|
///
|
||
|
/// If the server does not have any identity configured, then their network address
|
||
|
/// will be the only identity in use. Or, the network host may provide a platform-specific
|
||
|
/// identity with or without a valid certificate to authenticate that identity. (These
|
||
|
/// details will be contained in the SteamNetConnectionStatusChangedCallback_t.) It's
|
||
|
/// up to your application to decide whether to allow the connection.
|
||
|
///
|
||
|
/// By default, all connections will get basic encryption sufficient to prevent
|
||
|
/// casual eavesdropping. But note that without certificates (or a shared secret
|
||
|
/// distributed through some other out-of-band mechanism), you don't have any
|
||
|
/// way of knowing who is actually on the other end, and thus are vulnerable to
|
||
|
/// man-in-the-middle attacks.
|
||
|
///
|
||
|
/// If you need to set any initial config options, pass them here. See
|
||
|
/// SteamNetworkingConfigValue_t for more about why this is preferable to
|
||
|
/// setting the options "immediately" after creation.
|
||
|
virtual HSteamNetConnection ConnectByIPAddress( const SteamNetworkingIPAddr &address, int nOptions, const SteamNetworkingConfigValue_t *pOptions ) = 0;
|
||
|
|
||
|
/// Like CreateListenSocketIP, but clients will connect using ConnectP2P
|
||
|
///
|
||
|
/// nVirtualPort specifies how clients can connect to this socket using
|
||
|
/// ConnectP2P. It's very common for applications to only have one listening socket;
|
||
|
/// in that case, use zero. If you need to open multiple listen sockets and have clients
|
||
|
/// be able to connect to one or the other, then nVirtualPort should be a small integer (<1000)
|
||
|
/// unique to each listen socket you create.
|
||
|
///
|
||
|
/// If you use this, you probably want to call ISteamNetworkingUtils::InitRelayNetworkAccess()
|
||
|
/// when your app initializes
|
||
|
///
|
||
|
/// If you need to set any initial config options, pass them here. See
|
||
|
/// SteamNetworkingConfigValue_t for more about why this is preferable to
|
||
|
/// setting the options "immediately" after creation.
|
||
|
virtual HSteamListenSocket CreateListenSocketP2P( int nVirtualPort, int nOptions, const SteamNetworkingConfigValue_t *pOptions ) = 0;
|
||
|
|
||
|
/// Begin connecting to a server that is identified using a platform-specific identifier.
|
||
|
/// This uses the default rendezvous service, which depends on the platform and library
|
||
|
/// configuration. (E.g. on Steam, it goes through the steam backend.) The traffic is relayed
|
||
|
/// over the Steam Datagram Relay network.
|
||
|
///
|
||
|
/// If you use this, you probably want to call ISteamNetworkingUtils::InitRelayNetworkAccess()
|
||
|
/// when your app initializes
|
||
|
///
|
||
|
/// If you need to set any initial config options, pass them here. See
|
||
|
/// SteamNetworkingConfigValue_t for more about why this is preferable to
|
||
|
/// setting the options "immediately" after creation.
|
||
|
virtual HSteamNetConnection ConnectP2P( const SteamNetworkingIdentity &identityRemote, int nVirtualPort, int nOptions, const SteamNetworkingConfigValue_t *pOptions ) = 0;
|
||
|
|
||
|
/// Accept an incoming connection that has been received on a listen socket.
|
||
|
///
|
||
|
/// When a connection attempt is received (perhaps after a few basic handshake
|
||
|
/// packets have been exchanged to prevent trivial spoofing), a connection interface
|
||
|
/// object is created in the k_ESteamNetworkingConnectionState_Connecting state
|
||
|
/// and a SteamNetConnectionStatusChangedCallback_t is posted. At this point, your
|
||
|
/// application MUST either accept or close the connection. (It may not ignore it.)
|
||
|
/// Accepting the connection will transition it either into the connected state,
|
||
|
/// or the finding route state, depending on the connection type.
|
||
|
///
|
||
|
/// You should take action within a second or two, because accepting the connection is
|
||
|
/// what actually sends the reply notifying the client that they are connected. If you
|
||
|
/// delay taking action, from the client's perspective it is the same as the network
|
||
|
/// being unresponsive, and the client may timeout the connection attempt. In other
|
||
|
/// words, the client cannot distinguish between a delay caused by network problems
|
||
|
/// and a delay caused by the application.
|
||
|
///
|
||
|
/// This means that if your application goes for more than a few seconds without
|
||
|
/// processing callbacks (for example, while loading a map), then there is a chance
|
||
|
/// that a client may attempt to connect in that interval and fail due to timeout.
|
||
|
///
|
||
|
/// If the application does not respond to the connection attempt in a timely manner,
|
||
|
/// and we stop receiving communication from the client, the connection attempt will
|
||
|
/// be timed out locally, transitioning the connection to the
|
||
|
/// k_ESteamNetworkingConnectionState_ProblemDetectedLocally state. The client may also
|
||
|
/// close the connection before it is accepted, and a transition to the
|
||
|
/// k_ESteamNetworkingConnectionState_ClosedByPeer is also possible depending the exact
|
||
|
/// sequence of events.
|
||
|
///
|
||
|
/// Returns k_EResultInvalidParam if the handle is invalid.
|
||
|
/// Returns k_EResultInvalidState if the connection is not in the appropriate state.
|
||
|
/// (Remember that the connection state could change in between the time that the
|
||
|
/// notification being posted to the queue and when it is received by the application.)
|
||
|
///
|
||
|
/// A note about connection configuration options. If you need to set any configuration
|
||
|
/// options that are common to all connections accepted through a particular listen
|
||
|
/// socket, consider setting the options on the listen socket, since such options are
|
||
|
/// inherited automatically. If you really do need to set options that are connection
|
||
|
/// specific, it is safe to set them on the connection before accepting the connection.
|
||
|
virtual EResult AcceptConnection( HSteamNetConnection hConn ) = 0;
|
||
|
|
||
|
/// Disconnects from the remote host and invalidates the connection handle.
|
||
|
/// Any unread data on the connection is discarded.
|
||
|
///
|
||
|
/// nReason is an application defined code that will be received on the other
|
||
|
/// end and recorded (when possible) in backend analytics. The value should
|
||
|
/// come from a restricted range. (See ESteamNetConnectionEnd.) If you don't need
|
||
|
/// to communicate any information to the remote host, and do not want analytics to
|
||
|
/// be able to distinguish "normal" connection terminations from "exceptional" ones,
|
||
|
/// You may pass zero, in which case the generic value of
|
||
|
/// k_ESteamNetConnectionEnd_App_Generic will be used.
|
||
|
///
|
||
|
/// pszDebug is an optional human-readable diagnostic string that will be received
|
||
|
/// by the remote host and recorded (when possible) in backend analytics.
|
||
|
///
|
||
|
/// If you wish to put the socket into a "linger" state, where an attempt is made to
|
||
|
/// flush any remaining sent data, use bEnableLinger=true. Otherwise reliable data
|
||
|
/// is not flushed.
|
||
|
///
|
||
|
/// If the connection has already ended and you are just freeing up the
|
||
|
/// connection interface, the reason code, debug string, and linger flag are
|
||
|
/// ignored.
|
||
|
virtual bool CloseConnection( HSteamNetConnection hPeer, int nReason, const char *pszDebug, bool bEnableLinger ) = 0;
|
||
|
|
||
|
/// Destroy a listen socket. All the connections that were accepting on the listen
|
||
|
/// socket are closed ungracefully.
|
||
|
virtual bool CloseListenSocket( HSteamListenSocket hSocket ) = 0;
|
||
|
|
||
|
/// Set connection user data. the data is returned in the following places
|
||
|
/// - You can query it using GetConnectionUserData.
|
||
|
/// - The SteamNetworkingmessage_t structure.
|
||
|
/// - The SteamNetConnectionInfo_t structure. (Which is a member of SteamNetConnectionStatusChangedCallback_t.)
|
||
|
///
|
||
|
/// Returns false if the handle is invalid.
|
||
|
virtual bool SetConnectionUserData( HSteamNetConnection hPeer, int64 nUserData ) = 0;
|
||
|
|
||
|
/// Fetch connection user data. Returns -1 if handle is invalid
|
||
|
/// or if you haven't set any userdata on the connection.
|
||
|
virtual int64 GetConnectionUserData( HSteamNetConnection hPeer ) = 0;
|
||
|
|
||
|
/// Set a name for the connection, used mostly for debugging
|
||
|
virtual void SetConnectionName( HSteamNetConnection hPeer, const char *pszName ) = 0;
|
||
|
|
||
|
/// Fetch connection name. Returns false if handle is invalid
|
||
|
virtual bool GetConnectionName( HSteamNetConnection hPeer, char *pszName, int nMaxLen ) = 0;
|
||
|
|
||
|
/// Send a message to the remote host on the specified connection.
|
||
|
///
|
||
|
/// nSendFlags determines the delivery guarantees that will be provided,
|
||
|
/// when data should be buffered, etc. E.g. k_nSteamNetworkingSend_Unreliable
|
||
|
///
|
||
|
/// Note that the semantics we use for messages are not precisely
|
||
|
/// the same as the semantics of a standard "stream" socket.
|
||
|
/// (SOCK_STREAM) For an ordinary stream socket, the boundaries
|
||
|
/// between chunks are not considered relevant, and the sizes of
|
||
|
/// the chunks of data written will not necessarily match up to
|
||
|
/// the sizes of the chunks that are returned by the reads on
|
||
|
/// the other end. The remote host might read a partial chunk,
|
||
|
/// or chunks might be coalesced. For the message semantics
|
||
|
/// used here, however, the sizes WILL match. Each send call
|
||
|
/// will match a successful read call on the remote host
|
||
|
/// one-for-one. If you are porting existing stream-oriented
|
||
|
/// code to the semantics of reliable messages, your code should
|
||
|
/// work the same, since reliable message semantics are more
|
||
|
/// strict than stream semantics. The only caveat is related to
|
||
|
/// performance: there is per-message overhead to retain the
|
||
|
/// message sizes, and so if your code sends many small chunks
|
||
|
/// of data, performance will suffer. Any code based on stream
|
||
|
/// sockets that does not write excessively small chunks will
|
||
|
/// work without any changes.
|
||
|
///
|
||
|
/// The pOutMessageNumber is an optional pointer to receive the
|
||
|
/// message number assigned to the message, if sending was successful.
|
||
|
///
|
||
|
/// Returns:
|
||
|
/// - k_EResultInvalidParam: invalid connection handle, or the individual message is too big.
|
||
|
/// (See k_cbMaxSteamNetworkingSocketsMessageSizeSend)
|
||
|
/// - k_EResultInvalidState: connection is in an invalid state
|
||
|
/// - k_EResultNoConnection: connection has ended
|
||
|
/// - k_EResultIgnored: You used k_nSteamNetworkingSend_NoDelay, and the message was dropped because
|
||
|
/// we were not ready to send it.
|
||
|
/// - k_EResultLimitExceeded: there was already too much data queued to be sent.
|
||
|
/// (See k_ESteamNetworkingConfig_SendBufferSize)
|
||
|
virtual EResult SendMessageToConnection( HSteamNetConnection hConn, const void *pData, uint32 cbData, int nSendFlags, int64 *pOutMessageNumber ) = 0;
|
||
|
|
||
|
/// Send one or more messages without copying the message payload.
|
||
|
/// This is the most efficient way to send messages. To use this
|
||
|
/// function, you must first allocate a message object using
|
||
|
/// ISteamNetworkingUtils::AllocateMessage. (Do not declare one
|
||
|
/// on the stack or allocate your own.)
|
||
|
///
|
||
|
/// You should fill in the message payload. You can either let
|
||
|
/// it allocate the buffer for you and then fill in the payload,
|
||
|
/// or if you already have a buffer allocated, you can just point
|
||
|
/// m_pData at your buffer and set the callback to the appropriate function
|
||
|
/// to free it. Note that if you use your own buffer, it MUST remain valid
|
||
|
/// until the callback is executed. And also note that your callback can be
|
||
|
/// invoked at ant time from any thread (perhaps even before SendMessages
|
||
|
/// returns!), so it MUST be fast and threadsafe.
|
||
|
///
|
||
|
/// You MUST also fill in:
|
||
|
/// - m_conn - the handle of the connection to send the message to
|
||
|
/// - m_nFlags - bitmask of k_nSteamNetworkingSend_xxx flags.
|
||
|
///
|
||
|
/// All other fields are currently reserved and should not be modified.
|
||
|
///
|
||
|
/// The library will take ownership of the message structures. They may
|
||
|
/// be modified or become invalid at any time, so you must not read them
|
||
|
/// after passing them to this function.
|
||
|
///
|
||
|
/// pOutMessageNumberOrResult is an optional array that will receive,
|
||
|
/// for each message, the message number that was assigned to the message
|
||
|
/// if sending was successful. If sending failed, then a negative EResult
|
||
|
/// value is placed into the array. For example, the array will hold
|
||
|
/// -k_EResultInvalidState if the connection was in an invalid state.
|
||
|
/// See ISteamNetworkingSockets::SendMessageToConnection for possible
|
||
|
/// failure codes.
|
||
|
virtual void SendMessages( int nMessages, SteamNetworkingMessage_t *const *pMessages, int64 *pOutMessageNumberOrResult ) = 0;
|
||
|
|
||
|
/// Flush any messages waiting on the Nagle timer and send them
|
||
|
/// at the next transmission opportunity (often that means right now).
|
||
|
///
|
||
|
/// If Nagle is enabled (it's on by default) then when calling
|
||
|
/// SendMessageToConnection the message will be buffered, up to the Nagle time
|
||
|
/// before being sent, to merge small messages into the same packet.
|
||
|
/// (See k_ESteamNetworkingConfig_NagleTime)
|
||
|
///
|
||
|
/// Returns:
|
||
|
/// k_EResultInvalidParam: invalid connection handle
|
||
|
/// k_EResultInvalidState: connection is in an invalid state
|
||
|
/// k_EResultNoConnection: connection has ended
|
||
|
/// k_EResultIgnored: We weren't (yet) connected, so this operation has no effect.
|
||
|
virtual EResult FlushMessagesOnConnection( HSteamNetConnection hConn ) = 0;
|
||
|
|
||
|
/// Fetch the next available message(s) from the connection, if any.
|
||
|
/// Returns the number of messages returned into your array, up to nMaxMessages.
|
||
|
/// If the connection handle is invalid, -1 is returned.
|
||
|
///
|
||
|
/// The order of the messages returned in the array is relevant.
|
||
|
/// Reliable messages will be received in the order they were sent (and with the
|
||
|
/// same sizes --- see SendMessageToConnection for on this subtle difference from a stream socket).
|
||
|
///
|
||
|
/// Unreliable messages may be dropped, or delivered out of order with respect to
|
||
|
/// each other or with respect to reliable messages. The same unreliable message
|
||
|
/// may be received multiple times.
|
||
|
///
|
||
|
/// If any messages are returned, you MUST call SteamNetworkingMessage_t::Release() on each
|
||
|
/// of them free up resources after you are done. It is safe to keep the object alive for
|
||
|
/// a little while (put it into some queue, etc), and you may call Release() from any thread.
|
||
|
virtual int ReceiveMessagesOnConnection( HSteamNetConnection hConn, SteamNetworkingMessage_t **ppOutMessages, int nMaxMessages ) = 0;
|
||
|
|
||
|
/// Returns basic information about the high-level state of the connection.
|
||
|
virtual bool GetConnectionInfo( HSteamNetConnection hConn, SteamNetConnectionInfo_t *pInfo ) = 0;
|
||
|
|
||
|
/// Returns a small set of information about the real-time state of the connection
|
||
|
/// Returns false if the connection handle is invalid, or the connection has ended.
|
||
|
virtual bool GetQuickConnectionStatus( HSteamNetConnection hConn, SteamNetworkingQuickConnectionStatus *pStats ) = 0;
|
||
|
|
||
|
/// Returns detailed connection stats in text format. Useful
|
||
|
/// for dumping to a log, etc.
|
||
|
///
|
||
|
/// Returns:
|
||
|
/// -1 failure (bad connection handle)
|
||
|
/// 0 OK, your buffer was filled in and '\0'-terminated
|
||
|
/// >0 Your buffer was either nullptr, or it was too small and the text got truncated.
|
||
|
/// Try again with a buffer of at least N bytes.
|
||
|
virtual int GetDetailedConnectionStatus( HSteamNetConnection hConn, char *pszBuf, int cbBuf ) = 0;
|
||
|
|
||
|
/// Returns local IP and port that a listen socket created using CreateListenSocketIP is bound to.
|
||
|
///
|
||
|
/// An IPv6 address of ::0 means "any IPv4 or IPv6"
|
||
|
/// An IPv6 address of ::ffff:0000:0000 means "any IPv4"
|
||
|
virtual bool GetListenSocketAddress( HSteamListenSocket hSocket, SteamNetworkingIPAddr *address ) = 0;
|
||
|
|
||
|
/// Create a pair of connections that are talking to each other, e.g. a loopback connection.
|
||
|
/// This is very useful for testing, or so that your client/server code can work the same
|
||
|
/// even when you are running a local "server".
|
||
|
///
|
||
|
/// The two connections will immediately be placed into the connected state, and no callbacks
|
||
|
/// will be posted immediately. After this, if you close either connection, the other connection
|
||
|
/// will receive a callback, exactly as if they were communicating over the network. You must
|
||
|
/// close *both* sides in order to fully clean up the resources!
|
||
|
///
|
||
|
/// By default, internal buffers are used, completely bypassing the network, the chopping up of
|
||
|
/// messages into packets, encryption, copying the payload, etc. This means that loopback
|
||
|
/// packets, by default, will not simulate lag or loss. Passing true for bUseNetworkLoopback will
|
||
|
/// cause the socket pair to send packets through the local network loopback device (127.0.0.1)
|
||
|
/// on ephemeral ports. Fake lag and loss are supported in this case, and CPU time is expended
|
||
|
/// to encrypt and decrypt.
|
||
|
///
|
||
|
/// If you wish to assign a specific identity to either connection, you may pass a particular
|
||
|
/// identity. Otherwise, if you pass nullptr, the respective connection will assume a generic
|
||
|
/// "localhost" identity. If you use real network loopback, this might be translated to the
|
||
|
/// actual bound loopback port. Otherwise, the port will be zero.
|
||
|
virtual bool CreateSocketPair( HSteamNetConnection *pOutConnection1, HSteamNetConnection *pOutConnection2, bool bUseNetworkLoopback, const SteamNetworkingIdentity *pIdentity1, const SteamNetworkingIdentity *pIdentity2 ) = 0;
|
||
|
|
||
|
/// Get the identity assigned to this interface.
|
||
|
/// E.g. on Steam, this is the user's SteamID, or for the gameserver interface, the SteamID assigned
|
||
|
/// to the gameserver. Returns false and sets the result to an invalid identity if we don't know
|
||
|
/// our identity yet. (E.g. GameServer has not logged in. On Steam, the user will know their SteamID
|
||
|
/// even if they are not signed into Steam.)
|
||
|
virtual bool GetIdentity( SteamNetworkingIdentity *pIdentity ) = 0;
|
||
|
|
||
|
/// Indicate our desire to be ready participate in authenticated communications.
|
||
|
/// If we are currently not ready, then steps will be taken to obtain the necessary
|
||
|
/// certificates. (This includes a certificate for us, as well as any CA certificates
|
||
|
/// needed to authenticate peers.)
|
||
|
///
|
||
|
/// You can call this at program init time if you know that you are going to
|
||
|
/// be making authenticated connections, so that we will be ready immediately when
|
||
|
/// those connections are attempted. (Note that essentially all connections require
|
||
|
/// authentication, with the exception of ordinary UDP connections with authentication
|
||
|
/// disabled using k_ESteamNetworkingConfig_IP_AllowWithoutAuth.) If you don't call
|
||
|
/// this function, we will wait until a feature is utilized that that necessitates
|
||
|
/// these resources.
|
||
|
///
|
||
|
/// You can also call this function to force a retry, if failure has occurred.
|
||
|
/// Once we make an attempt and fail, we will not automatically retry.
|
||
|
/// In this respect, the behavior of the system after trying and failing is the same
|
||
|
/// as before the first attempt: attempting authenticated communication or calling
|
||
|
/// this function will call the system to attempt to acquire the necessary resources.
|
||
|
///
|
||
|
/// You can use GetAuthenticationStatus or listen for SteamNetAuthenticationStatus_t
|
||
|
/// to monitor the status.
|
||
|
///
|
||
|
/// Returns the current value that would be returned from GetAuthenticationStatus.
|
||
|
virtual ESteamNetworkingAvailability InitAuthentication() = 0;
|
||
|
|
||
|
/// Query our readiness to participate in authenticated communications. A
|
||
|
/// SteamNetAuthenticationStatus_t callback is posted any time this status changes,
|
||
|
/// but you can use this function to query it at any time.
|
||
|
///
|
||
|
/// The value of SteamNetAuthenticationStatus_t::m_eAvail is returned. If you only
|
||
|
/// want this high level status, you can pass NULL for pDetails. If you want further
|
||
|
/// details, pass non-NULL to receive them.
|
||
|
virtual ESteamNetworkingAvailability GetAuthenticationStatus( SteamNetAuthenticationStatus_t *pDetails ) = 0;
|
||
|
|
||
|
//
|
||
|
// Poll groups. A poll group is a set of connections that can be polled efficiently.
|
||
|
// (In our API, to "poll" a connection means to retrieve all pending messages. We
|
||
|
// actually don't have an API to "poll" the connection *state*, like BSD sockets.)
|
||
|
//
|
||
|
|
||
|
/// Create a new poll group.
|
||
|
///
|
||
|
/// You should destroy the poll group when you are done using DestroyPollGroup
|
||
|
virtual HSteamNetPollGroup CreatePollGroup() = 0;
|
||
|
|
||
|
/// Destroy a poll group created with CreatePollGroup().
|
||
|
///
|
||
|
/// If there are any connections in the poll group, they are removed from the group,
|
||
|
/// and left in a state where they are not part of any poll group.
|
||
|
/// Returns false if passed an invalid poll group handle.
|
||
|
virtual bool DestroyPollGroup( HSteamNetPollGroup hPollGroup ) = 0;
|
||
|
|
||
|
/// Assign a connection to a poll group. Note that a connection may only belong to a
|
||
|
/// single poll group. Adding a connection to a poll group implicitly removes it from
|
||
|
/// any other poll group it is in.
|
||
|
///
|
||
|
/// You can pass k_HSteamNetPollGroup_Invalid to remove a connection from its current
|
||
|
/// poll group without adding it to a new poll group.
|
||
|
///
|
||
|
/// If there are received messages currently pending on the connection, an attempt
|
||
|
/// is made to add them to the queue of messages for the poll group in approximately
|
||
|
/// the order that would have applied if the connection was already part of the poll
|
||
|
/// group at the time that the messages were received.
|
||
|
///
|
||
|
/// Returns false if the connection handle is invalid, or if the poll group handle
|
||
|
/// is invalid (and not k_HSteamNetPollGroup_Invalid).
|
||
|
virtual bool SetConnectionPollGroup( HSteamNetConnection hConn, HSteamNetPollGroup hPollGroup ) = 0;
|
||
|
|
||
|
/// Same as ReceiveMessagesOnConnection, but will return the next messages available
|
||
|
/// on any connection in the poll group. Examine SteamNetworkingMessage_t::m_conn
|
||
|
/// to know which connection. (SteamNetworkingMessage_t::m_nConnUserData might also
|
||
|
/// be useful.)
|
||
|
///
|
||
|
/// Delivery order of messages among different connections will usually match the
|
||
|
/// order that the last packet was received which completed the message. But this
|
||
|
/// is not a strong guarantee, especially for packets received right as a connection
|
||
|
/// is being assigned to poll group.
|
||
|
///
|
||
|
/// Delivery order of messages on the same connection is well defined and the
|
||
|
/// same guarantees are present as mentioned in ReceiveMessagesOnConnection.
|
||
|
/// (But the messages are not grouped by connection, so they will not necessarily
|
||
|
/// appear consecutively in the list; they may be interleaved with messages for
|
||
|
/// other connections.)
|
||
|
virtual int ReceiveMessagesOnPollGroup( HSteamNetPollGroup hPollGroup, SteamNetworkingMessage_t **ppOutMessages, int nMaxMessages ) = 0;
|
||
|
|
||
|
//
|
||
|
// Clients connecting to dedicated servers hosted in a data center,
|
||
|
// using central-authority-granted tickets.
|
||
|
//
|
||
|
|
||
|
/// Call this when you receive a ticket from your backend / matchmaking system. Puts the
|
||
|
/// ticket into a persistent cache, and optionally returns the parsed ticket.
|
||
|
///
|
||
|
/// See stamdatagram_ticketgen.h for more details.
|
||
|
virtual bool ReceivedRelayAuthTicket( const void *pvTicket, int cbTicket, SteamDatagramRelayAuthTicket *pOutParsedTicket ) = 0;
|
||
|
|
||
|
/// Search cache for a ticket to talk to the server on the specified virtual port.
|
||
|
/// If found, returns the number of seconds until the ticket expires, and optionally
|
||
|
/// the complete cracked ticket. Returns 0 if we don't have a ticket.
|
||
|
///
|
||
|
/// Typically this is useful just to confirm that you have a ticket, before you
|
||
|
/// call ConnectToHostedDedicatedServer to connect to the server.
|
||
|
virtual int FindRelayAuthTicketForServer( const SteamNetworkingIdentity &identityGameServer, int nVirtualPort, SteamDatagramRelayAuthTicket *pOutParsedTicket ) = 0;
|
||
|
|
||
|
/// Client call to connect to a server hosted in a Valve data center, on the specified virtual
|
||
|
/// port. You must have placed a ticket for this server into the cache, or else this connect attempt will fail!
|
||
|
///
|
||
|
/// You may wonder why tickets are stored in a cache, instead of simply being passed as an argument
|
||
|
/// here. The reason is to make reconnection to a gameserver robust, even if the client computer loses
|
||
|
/// connection to Steam or the central backend, or the app is restarted or crashes, etc.
|
||
|
///
|
||
|
/// If you use this, you probably want to call ISteamNetworkingUtils::InitRelayNetworkAccess()
|
||
|
/// when your app initializes
|
||
|
///
|
||
|
/// If you need to set any initial config options, pass them here. See
|
||
|
/// SteamNetworkingConfigValue_t for more about why this is preferable to
|
||
|
/// setting the options "immediately" after creation.
|
||
|
virtual HSteamNetConnection ConnectToHostedDedicatedServer( const SteamNetworkingIdentity &identityTarget, int nVirtualPort, int nOptions, const SteamNetworkingConfigValue_t *pOptions ) = 0;
|
||
|
|
||
|
//
|
||
|
// Servers hosted in data centers known to the Valve relay network
|
||
|
//
|
||
|
|
||
|
/// Returns the value of the SDR_LISTEN_PORT environment variable. This
|
||
|
/// is the UDP server your server will be listening on. This will
|
||
|
/// configured automatically for you in production environments.
|
||
|
///
|
||
|
/// In development, you'll need to set it yourself. See
|
||
|
/// https://partner.steamgames.com/doc/api/ISteamNetworkingSockets
|
||
|
/// for more information on how to configure dev environments.
|
||
|
virtual uint16 GetHostedDedicatedServerPort() = 0;
|
||
|
|
||
|
/// Returns 0 if SDR_LISTEN_PORT is not set. Otherwise, returns the data center the server
|
||
|
/// is running in. This will be k_SteamDatagramPOPID_dev in non-production environment.
|
||
|
virtual SteamNetworkingPOPID GetHostedDedicatedServerPOPID() = 0;
|
||
|
|
||
|
/// Return info about the hosted server. This contains the PoPID of the server,
|
||
|
/// and opaque routing information that can be used by the relays to send traffic
|
||
|
/// to your server.
|
||
|
///
|
||
|
/// You will need to send this information to your backend, and put it in tickets,
|
||
|
/// so that the relays will know how to forward traffic from
|
||
|
/// clients to your server. See SteamDatagramRelayAuthTicket for more info.
|
||
|
///
|
||
|
/// Also, note that the routing information is contained in SteamDatagramGameCoordinatorServerLogin,
|
||
|
/// so if possible, it's preferred to use GetGameCoordinatorServerLogin to send this info
|
||
|
/// to your game coordinator service, and also login securely at the same time.
|
||
|
///
|
||
|
/// On a successful exit, k_EResultOK is returned
|
||
|
///
|
||
|
/// Unsuccessful exit:
|
||
|
/// - Something other than k_EResultOK is returned.
|
||
|
/// - k_EResultInvalidState: We are not configured to listen for SDR (SDR_LISTEN_SOCKET
|
||
|
/// is not set.)
|
||
|
/// - k_EResultPending: we do not (yet) have the authentication information needed.
|
||
|
/// (See GetAuthenticationStatus.) If you use environment variables to pre-fetch
|
||
|
/// the network config, this data should always be available immediately.
|
||
|
/// - A non-localized diagnostic debug message will be placed in m_data that describes
|
||
|
/// the cause of the failure.
|
||
|
///
|
||
|
/// NOTE: The returned blob is not encrypted. Send it to your backend, but don't
|
||
|
/// directly share it with clients.
|
||
|
virtual EResult GetHostedDedicatedServerAddress( SteamDatagramHostedAddress *pRouting ) = 0;
|
||
|
|
||
|
/// Create a listen socket on the specified virtual port. The physical UDP port to use
|
||
|
/// will be determined by the SDR_LISTEN_PORT environment variable. If a UDP port is not
|
||
|
/// configured, this call will fail.
|
||
|
///
|
||
|
/// Note that this call MUST be made through the SteamGameServerNetworkingSockets() interface
|
||
|
///
|
||
|
/// If you need to set any initial config options, pass them here. See
|
||
|
/// SteamNetworkingConfigValue_t for more about why this is preferable to
|
||
|
/// setting the options "immediately" after creation.
|
||
|
virtual HSteamListenSocket CreateHostedDedicatedServerListenSocket( int nVirtualPort, int nOptions, const SteamNetworkingConfigValue_t *pOptions ) = 0;
|
||
|
|
||
|
/// Generate an authentication blob that can be used to securely login with
|
||
|
/// your backend, using SteamDatagram_ParseHostedServerLogin. (See
|
||
|
/// steamdatagram_gamecoordinator.h)
|
||
|
///
|
||
|
/// Before calling the function:
|
||
|
/// - Populate the app data in pLoginInfo (m_cbAppData and m_appData). You can leave
|
||
|
/// all other fields uninitialized.
|
||
|
/// - *pcbSignedBlob contains the size of the buffer at pBlob. (It should be
|
||
|
/// at least k_cbMaxSteamDatagramGameCoordinatorServerLoginSerialized.)
|
||
|
///
|
||
|
/// On a successful exit:
|
||
|
/// - k_EResultOK is returned
|
||
|
/// - All of the remaining fields of pLoginInfo will be filled out.
|
||
|
/// - *pcbSignedBlob contains the size of the serialized blob that has been
|
||
|
/// placed into pBlob.
|
||
|
///
|
||
|
/// Unsuccessful exit:
|
||
|
/// - Something other than k_EResultOK is returned.
|
||
|
/// - k_EResultNotLoggedOn: you are not logged in (yet)
|
||
|
/// - See GetHostedDedicatedServerAddress for more potential failure return values.
|
||
|
/// - A non-localized diagnostic debug message will be placed in pBlob that describes
|
||
|
/// the cause of the failure.
|
||
|
///
|
||
|
/// This works by signing the contents of the SteamDatagramGameCoordinatorServerLogin
|
||
|
/// with the cert that is issued to this server. In dev environments, it's OK if you do
|
||
|
/// not have a cert. (You will need to enable insecure dev login in SteamDatagram_ParseHostedServerLogin.)
|
||
|
/// Otherwise, you will need a signed cert.
|
||
|
///
|
||
|
/// NOTE: The routing blob returned here is not encrypted. Send it to your backend
|
||
|
/// and don't share it directly with clients.
|
||
|
virtual EResult GetGameCoordinatorServerLogin( SteamDatagramGameCoordinatorServerLogin *pLoginInfo, int *pcbSignedBlob, void *pBlob ) = 0;
|
||
|
|
||
|
|
||
|
//
|
||
|
// Relayed connections using custom signaling protocol
|
||
|
//
|
||
|
// This is used if you have your own method of sending out-of-band
|
||
|
// signaling / rendezvous messages through a mutually trusted channel.
|
||
|
//
|
||
|
|
||
|
/// Create a P2P "client" connection that does signaling over a custom
|
||
|
/// rendezvous/signaling channel.
|
||
|
///
|
||
|
/// pSignaling points to a new object that you create just for this connection.
|
||
|
/// It must stay valid until Release() is called. Once you pass the
|
||
|
/// object to this function, it assumes ownership. Release() will be called
|
||
|
/// from within the function call if the call fails. Furthermore, until Release()
|
||
|
/// is called, you should be prepared for methods to be invoked on your
|
||
|
/// object from any thread! You need to make sure your object is threadsafe!
|
||
|
/// Furthermore, you should make sure that dispatching the methods is done
|
||
|
/// as quickly as possible.
|
||
|
///
|
||
|
/// This function will immediately construct a connection in the "connecting"
|
||
|
/// state. Soon after (perhaps before this function returns, perhaps in another thread),
|
||
|
/// the connection will begin sending signaling messages by calling
|
||
|
/// ISteamNetworkingConnectionCustomSignaling::SendSignal.
|
||
|
///
|
||
|
/// When the remote peer accepts the connection (See
|
||
|
/// ISteamNetworkingCustomSignalingRecvContext::OnConnectRequest),
|
||
|
/// it will begin sending signaling messages. When these messages are received,
|
||
|
/// you can pass them to the connection using ReceivedP2PCustomSignal.
|
||
|
///
|
||
|
/// If you know the identity of the peer that you expect to be on the other end,
|
||
|
/// you can pass their identity to improve debug output or just detect bugs.
|
||
|
/// If you don't know their identity yet, you can pass NULL, and their
|
||
|
/// identity will be established in the connection handshake.
|
||
|
///
|
||
|
/// If you use this, you probably want to call ISteamNetworkingUtils::InitRelayNetworkAccess()
|
||
|
/// when your app initializes
|
||
|
///
|
||
|
/// If you need to set any initial config options, pass them here. See
|
||
|
/// SteamNetworkingConfigValue_t for more about why this is preferable to
|
||
|
/// setting the options "immediately" after creation.
|
||
|
virtual HSteamNetConnection ConnectP2PCustomSignaling( ISteamNetworkingConnectionCustomSignaling *pSignaling, const SteamNetworkingIdentity *pPeerIdentity, int nOptions, const SteamNetworkingConfigValue_t *pOptions ) = 0;
|
||
|
|
||
|
/// Called when custom signaling has received a message. When your
|
||
|
/// signaling channel receives a message, it should save off whatever
|
||
|
/// routing information was in the envelope into the context object,
|
||
|
/// and then pass the payload to this function.
|
||
|
///
|
||
|
/// A few different things can happen next, depending on the message:
|
||
|
///
|
||
|
/// - If the signal is associated with existing connection, it is dealt
|
||
|
/// with immediately. If any replies need to be sent, they will be
|
||
|
/// dispatched using the ISteamNetworkingConnectionCustomSignaling
|
||
|
/// associated with the connection.
|
||
|
/// - If the message represents a connection request (and the request
|
||
|
/// is not redundant for an existing connection), a new connection
|
||
|
/// will be created, and ReceivedConnectRequest will be called on your
|
||
|
/// context object to determine how to proceed.
|
||
|
/// - Otherwise, the message is for a connection that does not
|
||
|
/// exist (anymore). In this case, we *may* call SendRejectionReply
|
||
|
/// on your context object.
|
||
|
///
|
||
|
/// In any case, we will not save off pContext or access it after this
|
||
|
/// function returns.
|
||
|
///
|
||
|
/// Returns true if the message was parsed and dispatched without anything
|
||
|
/// unusual or suspicious happening. Returns false if there was some problem
|
||
|
/// with the message that prevented ordinary handling. (Debug output will
|
||
|
/// usually have more information.)
|
||
|
///
|
||
|
/// If you expect to be using relayed connections, then you probably want
|
||
|
/// to call ISteamNetworkingUtils::InitRelayNetworkAccess() when your app initializes
|
||
|
virtual bool ReceivedP2PCustomSignal( const void *pMsg, int cbMsg, ISteamNetworkingCustomSignalingRecvContext *pContext ) = 0;
|
||
|
|
||
|
//
|
||
|
// Certificate provision by the application. On Steam, we normally handle all this automatically
|
||
|
// and you will not need to use these advanced functions.
|
||
|
//
|
||
|
|
||
|
/// Get blob that describes a certificate request. You can send this to your game coordinator.
|
||
|
/// Upon entry, *pcbBlob should contain the size of the buffer. On successful exit, it will
|
||
|
/// return the number of bytes that were populated. You can pass pBlob=NULL to query for the required
|
||
|
/// size. (256 bytes is a very conservative estimate.)
|
||
|
///
|
||
|
/// Pass this blob to your game coordinator and call SteamDatagram_CreateCert.
|
||
|
virtual bool GetCertificateRequest( int *pcbBlob, void *pBlob, SteamNetworkingErrMsg &errMsg ) = 0;
|
||
|
|
||
|
/// Set the certificate. The certificate blob should be the output of
|
||
|
/// SteamDatagram_CreateCert.
|
||
|
virtual bool SetCertificate( const void *pCertificate, int cbCertificate, SteamNetworkingErrMsg &errMsg ) = 0;
|
||
|
|
||
|
// Invoke all callbacks queued for this interface.
|
||
|
// On Steam, callbacks are dispatched via the ordinary Steamworks callbacks mechanism.
|
||
|
// So if you have code that is also targeting Steam, you should call this at about the
|
||
|
// same time you would call SteamAPI_RunCallbacks and SteamGameServer_RunCallbacks.
|
||
|
#ifdef STEAMNETWORKINGSOCKETS_STANDALONELIB
|
||
|
virtual void RunCallbacks( ISteamNetworkingSocketsCallbacks *pCallbacks ) = 0;
|
||
|
#endif
|
||
|
protected:
|
||
|
// ~ISteamNetworkingSockets(); // Silence some warnings
|
||
|
};
|
||
|
|
||
|
|
||
|
/// Interface used to send signaling messages for a particular connection.
|
||
|
/// You will need to construct one of these per connection.
|
||
|
///
|
||
|
/// - For connections initiated locally, you will construct it and pass
|
||
|
/// it to ISteamNetworkingSockets::ConnectP2PCustomSignaling.
|
||
|
/// - For connections initiated remotely and "accepted" locally, you
|
||
|
/// will return it from ISteamNetworkingCustomSignalingRecvContext::OnConnectRequest
|
||
|
class ISteamNetworkingConnectionCustomSignaling
|
||
|
{
|
||
|
public:
|
||
|
/// Called to send a rendezvous message to the remote peer. This may be called
|
||
|
/// from any thread, at any time, so you need to be thread-safe! Don't take
|
||
|
/// any locks that might hold while calling into SteamNetworkingSockets functions,
|
||
|
/// because this could lead to deadlocks.
|
||
|
///
|
||
|
/// Note that when initiating a connection, we may not know the identity
|
||
|
/// of the peer, if you did not specify it in ConnectP2PCustomSignaling.
|
||
|
///
|
||
|
/// Return true if a best-effort attempt was made to deliver the message.
|
||
|
/// If you return false, it is assumed that the situation is fatal;
|
||
|
/// the connection will be closed, and Release() will be called
|
||
|
/// eventually.
|
||
|
///
|
||
|
/// Signaling objects will not be shared between connections.
|
||
|
/// You can assume that the same value of hConn will be used
|
||
|
/// every time.
|
||
|
virtual bool SendSignal( HSteamNetConnection hConn, const SteamNetConnectionInfo_t &info, const void *pMsg, int cbMsg ) = 0;
|
||
|
|
||
|
/// Called when the connection no longer needs to send signals.
|
||
|
/// Note that this happens eventually (but not immediately) after
|
||
|
/// the connection is closed. Signals may need to be sent for a brief
|
||
|
/// time after the connection is closed, to clean up the connection.
|
||
|
virtual void Release() = 0;
|
||
|
};
|
||
|
|
||
|
/// Interface used when a custom signal is received.
|
||
|
/// See ISteamNetworkingSockets::ReceivedP2PCustomSignal
|
||
|
class ISteamNetworkingCustomSignalingRecvContext
|
||
|
{
|
||
|
public:
|
||
|
|
||
|
/// Called when the signal represents a request for a new connection.
|
||
|
///
|
||
|
/// If you want to ignore the request, just return NULL. In this case,
|
||
|
/// the peer will NOT receive any reply. You should consider ignoring
|
||
|
/// requests rather than actively rejecting them, as a security measure.
|
||
|
/// If you actively reject requests, then this makes it possible to detect
|
||
|
/// if a user is online or not, just by sending them a request.
|
||
|
///
|
||
|
/// If you wish to send back a rejection, then use
|
||
|
/// ISteamNetworkingSockets::CloseConnection() and then return NULL.
|
||
|
/// We will marshal a properly formatted rejection signal and
|
||
|
/// call SendRejectionSignal() so you can send it to them.
|
||
|
///
|
||
|
/// If you return a signaling object, the connection is NOT immediately
|
||
|
/// accepted by default. Instead, it stays in the "connecting" state,
|
||
|
/// and the usual callback is posted, and your app can accept the
|
||
|
/// connection using ISteamNetworkingSockets::AcceptConnection. This
|
||
|
/// may be useful so that these sorts of connections can be more similar
|
||
|
/// to your application code as other types of connections accepted on
|
||
|
/// a listen socket. If this is not useful and you want to skip this
|
||
|
/// callback process and immediately accept the connection, call
|
||
|
/// ISteamNetworkingSockets::AcceptConnection before returning the
|
||
|
/// signaling object.
|
||
|
///
|
||
|
/// After accepting a connection (through either means), the connection
|
||
|
/// will transition into the "finding route" state.
|
||
|
virtual ISteamNetworkingConnectionCustomSignaling *OnConnectRequest( HSteamNetConnection hConn, const SteamNetworkingIdentity &identityPeer ) = 0;
|
||
|
|
||
|
/// This is called actively communication rejection or failure
|
||
|
/// to the incoming message. If you intend to ignore all incoming requests
|
||
|
/// that you do not wish to accept, then it's not strictly necessary to
|
||
|
/// implement this.
|
||
|
virtual void SendRejectionSignal( const SteamNetworkingIdentity &identityPeer, const void *pMsg, int cbMsg ) = 0;
|
||
|
};
|
||
|
|
||
|
|
||
|
|
||
|
#endif // ISTEAMNETWORKINGSOCKETS008
|