#pragma once #define WIN32_LEAN_AND_MEAN #include <Windows.h> #include <string> #include <vector> #include <deque> #include <array> #include <unordered_map> #include <unordered_set> #include <functional> #include <algorithm> #include <regex> #include <memory> #include <optional> #include <thread> #include <mutex> #include <shared_mutex> #include <atomic> #include <filesystem> #include <cstdint> #include <cassert> #ifdef _WIN64 constexpr bool x64 = true; #else constexpr bool x64 = false; #endif template <typename T, typename... Xs> struct ArrayImpl { using Type = std::tuple<T, Xs...>[]; }; template <typename T> struct ArrayImpl<T> { using Type = T[]; }; template <typename... Ts> using Array = typename ArrayImpl<Ts...>::Type; template <auto F> using Functor = std::integral_constant<std::remove_reference_t<decltype(F)>, F>; template <typename V> struct Identity { V operator()(V v) const { return v; } }; struct PermissivePointer { template <typename T> operator T*() { return (T*)p; } void* p; }; template <typename HandleCloser = Functor<CloseHandle>> class AutoHandle { public: AutoHandle(HANDLE h) : h(h) {} operator HANDLE() { return h.get(); } PHANDLE operator&() { static_assert(sizeof(*this) == sizeof(HANDLE)); assert(!h); return (PHANDLE)this; } operator bool() { return h.get() != NULL && h.get() != INVALID_HANDLE_VALUE; } private: struct HandleCleaner { void operator()(void* h) { if (h != INVALID_HANDLE_VALUE) HandleCloser()(PermissivePointer{ h }); } }; std::unique_ptr<void, HandleCleaner> h; }; template<typename T, typename M = std::mutex> class Synchronized { public: template <typename... Args> Synchronized(Args&&... args) : contents(std::forward<Args>(args)...) {} struct Locker { T* operator->() { return &contents; } std::unique_lock<M> lock; T& contents; }; Locker Acquire() { return { std::unique_lock(m), contents }; } Locker operator->() { return Acquire(); } T Copy() { return Acquire().contents; } private: T contents; M m; }; static struct { BYTE DUMMY[100]; template <typename T> operator T*() { static_assert(sizeof(T) < sizeof(DUMMY)); return (T*)DUMMY; } } DUMMY; template <typename T> inline auto FormatArg(T arg) { return arg; } template <typename C> inline auto FormatArg(const std::basic_string<C>& arg) { return arg.c_str(); } #pragma warning(push) #pragma warning(disable: 4996) template <typename... Args> inline std::string FormatString(const char* format, const Args&... args) { std::string buffer(snprintf(nullptr, 0, format, FormatArg(args)...), '\0'); sprintf(buffer.data(), format, FormatArg(args)...); return buffer; } template <typename... Args> inline std::wstring FormatString(const wchar_t* format, const Args&... args) { std::wstring buffer(_snwprintf(nullptr, 0, format, FormatArg(args)...), L'\0'); _swprintf(buffer.data(), format, FormatArg(args)...); return buffer; } #pragma warning(pop) inline std::optional<std::wstring> StringToWideString(const std::string& text, UINT encoding) { std::vector<wchar_t> buffer(text.size() + 1); if (int length = MultiByteToWideChar(encoding, 0, text.c_str(), text.size() + 1, buffer.data(), buffer.size())) return std::wstring(buffer.data(), length - 1); return {}; } inline std::wstring StringToWideString(const std::string& text) { std::vector<wchar_t> buffer(text.size() + 1); MultiByteToWideChar(CP_UTF8, 0, text.c_str(), -1, buffer.data(), buffer.size()); return buffer.data(); } inline std::string WideStringToString(const std::wstring& text) { std::vector<char> buffer((text.size() + 1) * 4); WideCharToMultiByte(CP_UTF8, 0, text.c_str(), -1, buffer.data(), buffer.size(), nullptr, nullptr); return buffer.data(); } template <typename... Args> inline void TEXTRACTOR_MESSAGE(const wchar_t* format, const Args&... args) { MessageBoxW(NULL, FormatString(format, args...).c_str(), L"Textractor", MB_OK); } #ifdef _DEBUG #define TEST(...) static auto _ = CreateThread(nullptr, 0, [](auto) { __VA_ARGS__; return 0UL; }, NULL, 0, nullptr); #else #define TEST(...) #endif