588 lines
18 KiB
C
Raw Normal View History

2015-04-02 23:30:22 +09:00
#pragma once
// avl_p.h
// 8/23/2013 jichi
// Branch: ITH/AVL.h, rev 133
#include "config.h"
enum { STACK_SIZE = 32 };
//#ifndef ITH_STACK
//#define ITH_STACK
template<class T, int stack_size>
class MyStack
{
int index;
T s[stack_size];
public:
MyStack(): index(0)
{ ITH_MEMSET_HEAP(s, 0, sizeof(s)); } // jichi 9/21/2013: assume T is atomic type
T &back() { return s[index-1]; }
int size() { return index; }
void push_back(const T &e)
{
if (index < stack_size)
s[index++]=e;
}
void pop_back() { index--; }
T &operator[](int i) { return s[i]; }
};
//#endif // ITH_STACK
// jichi 9/22/2013: T must be a pointer type which can be deleted
template <class T, class D>
struct IHFSERVICE TreeNode
{
//typedef TreeNode<T, D> Self;
TreeNode() :
Left(nullptr), Right(nullptr), Parent(nullptr)
, rank(1)
, factor('\0'), reserve('\0')
//, key()
//, data()
{
ITH_MEMSET_HEAP(&key, 0, sizeof(key)); // jcihi 9/26/2013: zero memory
ITH_MEMSET_HEAP(&data, 0, sizeof(data)); // jcihi 9/26/2013: zero memory
}
TreeNode(const T &k, const D &d) :
Left(nullptr), Right(nullptr), Parent(nullptr)
, rank(1)
, factor('\0'), reserve('\0') // jichi 9/21/2013: zero reserve
, key(k)
, data(d)
{}
TreeNode *Successor()
{
TreeNode *Node,
*ParentNode;
Node = Right;
if (!Node) {
Node = this;
for (;;) {
ParentNode = Node->Parent;
if (!ParentNode)
return nullptr;
if (ParentNode->Left == Node)
break;
Node = ParentNode;
}
return ParentNode;
}
else
while (Node->Left)
Node = Node->Left;
return Node;
}
TreeNode *Predecessor()
{
TreeNode *Node,
*ParentNode;
Node = Left;
if (!Node) {
Node = this;
for(;;) {
ParentNode = Node->Parent;
if (!ParentNode)
return nullptr;
if (ParentNode->Right == Node)
break;
Node = ParentNode;
}
return ParentNode;
}
else
while (Node->Right)
Node = Node->Right;
return Node;
}
int height()
{
if (!this) // jichi 9/26/2013: what?!
return 0;
int l = Left->height(),
r = Right->height(),
f = factor;
if (l - r + f != 0)
__debugbreak();
f = l > r ? l : r;
return f + 1;
}
TreeNode *Left,
*Right,
*Parent;
unsigned short rank;
char factor,
reserve;
T key;
D data;
};
template<class T,class D>
struct NodePath
{
NodePath() { memset(this, 0, sizeof(NodePath)); } // jichi 11/30/2013: This is the original code in ITH
NodePath(TreeNode<T,D> *n, int f): Node(n), fact(f) {}
TreeNode<T,D> *Node;
union { char factor; int fact; };
};
template <class T, class D, class fComp, class fCopy, class fLength>
class IHFSERVICE AVLTree
{
protected:
TreeNode<T*, D> head;
fComp fCmp;
fCopy fCpy;
fLength fLen;
public:
// - Construction -
AVLTree() {}
virtual ~AVLTree() { DeleteAll(); }
// - Properties -
TreeNode<T*, D> *TreeRoot() const { return head.Left; }
// - Actions -
void DeleteAll()
{
while (head.Left)
DeleteRoot();
}
TreeNode<T*, D> *Insert(const T *key, const D &data)
{
if (head.Left) {
MyStack<TreeNode<T*, D> *,STACK_SIZE> path;
TreeNode<T*,D> *DownNode, *ParentNode, *BalanceNode, *TryNode, *NewNode; //P,T,S,Q
ParentNode = &head;
path.push_back(ParentNode);
char factor,f;
BalanceNode = DownNode = head.Left;
for (;;) { //The first part of AVL tree insert. Just do as binary tree insert routine and record some nodes.
factor = fCmp(key,DownNode->key);
if (factor == 0)
return DownNode; //Duplicate key. Return and do nothing.
TryNode = _FactorLink(DownNode, factor);
if (factor == -1)
path.push_back(DownNode);
if (TryNode) { //DownNode has a child.
if (TryNode->factor != 0) { //Keep track of unbalance node and its parent.
ParentNode = DownNode;
BalanceNode = TryNode;
}
DownNode = TryNode;
}
else
break; //Finished binary tree search;
}
while (path.size()) {
path.back()->rank++;
path.pop_back();
}
size_t sz = fLen(key) + 1;
T *new_key = new T[sz];
ITH_MEMSET_HEAP(new_key, 0, sz * sizeof(T)); // jichi 9/26/2013: Zero memory
fCpy(new_key, key);
TryNode = new TreeNode<T*, D>(new_key, data);
_FactorLink(DownNode, factor) = TryNode;
TryNode->Parent = DownNode;
NewNode = TryNode;
//Finished binary tree insert. Next to do is to modify balance factors between
//BalanceNode and the new node.
TreeNode<T*, D> *ModifyNode;
factor = fCmp(key, BalanceNode->key);
//factor=key<BalanceNode->key ? factor=-1:1; //Determine the balance factor at BalanceNode.
ModifyNode = DownNode = _FactorLink(BalanceNode,factor);
//ModifyNode will be the 1st child.
//DownNode will travel from here to the recent inserted node (TryNode).
while (DownNode != TryNode) { //Check if we reach the bottom.
f = fCmp(key,DownNode->key);
//f=_FactorCompare(key,DownNode->key);
DownNode->factor = f;
DownNode = _FactorLink(DownNode, f);//Modify balance factor and travels down.
}
//Finshed modifying balance factor.
//Next to do is check the tree if it's unbalance and recover balance.
if (BalanceNode->factor == 0) { //Tree has grown higher.
BalanceNode->factor = factor;
_IncreaseHeight(); //Modify balance factor and increase the height.
return NewNode;
}
if (BalanceNode->factor + factor == 0) { //Tree has gotten more balanced.
BalanceNode->factor = 0; //Set balance factor to 0.
return NewNode;
}
//Tree has gotten out of balance.
if (ModifyNode->factor == factor) //A node and its child has same factor. Single rotation.
DownNode = _SingleRotation(BalanceNode, ModifyNode, factor);
else //A node and its child has converse factor. Double rotation.
DownNode = _DoubleRotation(BalanceNode, ModifyNode, factor);
//Finished the balancing work. Set child field to the root of the new child tree.
if (BalanceNode == ParentNode->Left)
ParentNode->Left = DownNode;
else
ParentNode->Right = DownNode;
return NewNode;
}
else { //root null?
size_t sz = fLen(key) + 1;
T *new_key = new T[sz];
ITH_MEMSET_HEAP(new_key, 0, sz * sizeof(T)); // jichi 9/26/2013: Zero memory
fCpy(new_key, key);
head.Left = new TreeNode<T *, D>(new_key, data);
head.rank++;
_IncreaseHeight();
return head.Left;
}
}
bool Delete(T *key)
{
NodePath<T*,D> PathNode;
MyStack<NodePath<T*,D>,STACK_SIZE> path; //Use to record a path to the destination node.
path.push_back(NodePath<T*,D>(&head,-1));
TreeNode<T*,D> *TryNode,*ChildNode,*BalanceNode,*SuccNode;
TryNode=head.Left;
char factor;
for (;;) { //Search for the
if (TryNode == 0)
return false; //Not found.
factor = fCmp(key, TryNode->key);
if (factor == 0)
break; //Key found, continue to delete.
//factor = _FactorCompare( key, TryNode->key );
path.push_back(NodePath<T*,D>(TryNode,factor));
TryNode = _FactorLink(TryNode,factor); //Move to left.
}
SuccNode = TryNode->Right; //Find a successor.
factor = 1;
if (SuccNode == 0) {
SuccNode = TryNode->Left;
factor = -1;
}
path.push_back(NodePath<T*,D>(TryNode,factor));
while (SuccNode) {
path.push_back(NodePath<T*,D>(SuccNode, -factor));
SuccNode = _FactorLink(SuccNode,-factor);
}
PathNode = path.back();
delete[] TryNode->key; // jichi 9/22/2013: key is supposed to be an array
TryNode->key = PathNode.Node->key; //Replace key and data field with the successor or predecessor.
PathNode.Node->key = nullptr;
TryNode->data = PathNode.Node->data;
path.pop_back();
_FactorLink(path.back().Node,path.back().factor) = _FactorLink(PathNode.Node,-PathNode.factor);
delete PathNode.Node; //Remove the successor from the tree and release memory.
PathNode = path.back();
for (int i=0; i<path.size(); i++)
if (path[i].factor==-1)
path[i].Node->rank--;
for (;;) { //Rebalance the tree along the path back to the root.
if (path.size()==1) {
_DecreaseHeight();
break;
}
BalanceNode = PathNode.Node;
if (BalanceNode->factor == 0) { // A balance node, just need to adjust the factor. Don't have to recurve since subtree height stays.
BalanceNode->factor=-PathNode.factor;
break;
}
if (BalanceNode->factor == PathNode.factor) { // Node get more balance. Subtree height decrease, need to recurve.
BalanceNode->factor = 0;
path.pop_back();
PathNode = path.back();
continue;
}
//Node get out of balance. Here raises 3 cases.
ChildNode = _FactorLink(BalanceNode, -PathNode.factor);
if (ChildNode->factor == 0) { // New case different to insert operation.
TryNode = _SingleRotation2( BalanceNode, ChildNode, BalanceNode->factor );
path.pop_back();
PathNode = path.back();
_FactorLink(PathNode.Node, PathNode.factor) = TryNode;
break;
}
else {
if (ChildNode->factor == BalanceNode->factor) // Analogous to insert operation case 1.
TryNode = _SingleRotation( BalanceNode, ChildNode, BalanceNode->factor );
else if (ChildNode->factor + BalanceNode->factor == 0) // Analogous to insert operation case 2.
TryNode = _DoubleRotation( BalanceNode, ChildNode, BalanceNode->factor );
}
path.pop_back(); //Recurse back along the path.
PathNode = path.back();
_FactorLink(PathNode.Node, PathNode.factor) = TryNode;
}
return true;
}
D &operator [](T *key)
{ return (Insert(key,D())->data); }
TreeNode<T*,D> *Search(const T *key)
{
TreeNode<T*,D> *Find=head.Left;
char k;
while (Find != 0) {//&&Find->key!=key)
k = fCmp(key, Find->key);
if (k == 0) break;
Find = _FactorLink(Find, k);
}
return Find;
}
TreeNode<T*,D> *SearchIndex(unsigned int rank)
{
unsigned int r = head.rank;
if (rank == -1)
return 0;
if (++rank>=r)
return 0;
TreeNode<T*,D> *n=&head;
while (r!=rank) {
if (rank>r) {
n=n->Right;
rank-=r;
r=n->rank;
} else {
n=n->Left;
r=n->rank;
}
}
return n;
}
TreeNode<T*,D> *Begin()
{
TreeNode<T*,D> *Node = head.Left;
if (Node)
while (Node->Left) Node = Node->Left;
return Node;
}
TreeNode<T*,D> *End()
{
TreeNode<T*,D> *Node=head.Left;
if (Node)
while (Node->Right) Node = Node->Right;
return Node;
}
unsigned int Count() const { return head.rank - 1; }
template <class Fn>
Fn TraverseTree(Fn &f)
{ return TraverseTreeNode(head.Left,f); }
protected:
bool DeleteRoot()
{
NodePath<T*,D> PathNode;
MyStack<NodePath<T*,D>,STACK_SIZE> path; //Use to record a path to the destination node.
path.push_back(NodePath<T*,D>(&head,-1));
TreeNode<T*,D> *TryNode,*ChildNode,*BalanceNode,*SuccNode;
TryNode=head.Left;
char factor;
SuccNode=TryNode->Right; //Find a successor.
factor=1;
if (SuccNode==0)
{
SuccNode=TryNode->Left;
factor=-1;
}
path.push_back(NodePath<T*,D>(TryNode,factor));
while (SuccNode) {
path.push_back(NodePath<T*,D>(SuccNode,-factor));
SuccNode=_FactorLink(SuccNode,-factor);
}
PathNode=path.back();
delete[] TryNode->key; // jichi 9/22/2013: key is supposed to be an array
TryNode->key=PathNode.Node->key; //Replace key and data field with the successor.
PathNode.Node->key = nullptr;
TryNode->data=PathNode.Node->data;
path.pop_back();
_FactorLink(path.back().Node,path.back().factor) = _FactorLink(PathNode.Node,-PathNode.factor);
delete PathNode.Node; //Remove the successor from the tree and release memory.
PathNode=path.back();
for (int i=0;i<path.size();i++)
if (path[i].factor==-1)
path[i].Node->rank--;
for (;;) { //Rebalance the tree along the path back to the root.
if (path.size() == 1) {
_DecreaseHeight();
break;
}
BalanceNode = PathNode.Node;
if (BalanceNode->factor == 0) { // A balance node, just need to adjust the factor. Don't have to recurse since subtree height not changed.
BalanceNode->factor=-PathNode.factor;
break;
}
if (BalanceNode->factor==PathNode.factor) { // Node get more balance. Subtree height decrease, need to recurse.
BalanceNode->factor=0;
path.pop_back();
PathNode=path.back();
continue;
}
//Node get out of balance. Here raises 3 cases.
ChildNode = _FactorLink(BalanceNode, -PathNode.factor);
if (ChildNode->factor == 0) { // New case different to insert operation.
TryNode = _SingleRotation2( BalanceNode, ChildNode, BalanceNode->factor );
path.pop_back();
PathNode=path.back();
_FactorLink(PathNode.Node, PathNode.factor) = TryNode;
break;
} else {
if (ChildNode->factor == BalanceNode->factor) // Analogous to insert operation case 1.
TryNode = _SingleRotation( BalanceNode, ChildNode, BalanceNode->factor );
else if (ChildNode->factor + BalanceNode->factor == 0) // Analogous to insert operation case 2.
TryNode = _DoubleRotation( BalanceNode, ChildNode, BalanceNode->factor );
}
path.pop_back(); // Recurve back along the path.
PathNode=path.back();
_FactorLink(PathNode.Node, PathNode.factor) = TryNode;
}
return true;
}
template <class Fn>
Fn TraverseTreeNode(TreeNode<T*,D> *Node, Fn &f)
{
if (Node) {
if (Node->Left)
TraverseTreeNode(Node->Left,f);
f(Node);
if (Node->Right)
TraverseTreeNode(Node->Right,f);
}
return f;
}
TreeNode<T*,D> *_SingleRotation(TreeNode<T*,D> *BalanceNode, TreeNode<T*,D> *ModifyNode, char factor)
{
TreeNode<T*,D> *Node = _FactorLink(ModifyNode, -factor);
_FactorLink(BalanceNode, factor) = Node;
_FactorLink(ModifyNode, -factor) = BalanceNode;
if (Node)
Node->Parent = BalanceNode;
ModifyNode->Parent = BalanceNode->Parent;
BalanceNode->Parent = ModifyNode;
BalanceNode->factor = ModifyNode->factor = 0; //After single rotation, set all factor of 3 node to 0.
if (factor == 1)
ModifyNode->rank += BalanceNode->rank;
else
BalanceNode->rank -= ModifyNode->rank;
return ModifyNode;
}
TreeNode<T*,D> *_SingleRotation2(TreeNode<T*,D> *BalanceNode, TreeNode<T*,D> *ModifyNode, char factor)
{
TreeNode<T*,D> *Node = _FactorLink(ModifyNode, -factor);
_FactorLink(BalanceNode, factor) = Node;
_FactorLink(ModifyNode, -factor) = BalanceNode;
if (Node) Node->Parent = BalanceNode;
ModifyNode->Parent = BalanceNode->Parent;
BalanceNode->Parent = ModifyNode;
ModifyNode->factor = -factor;
if (factor == 1)
ModifyNode->rank+=BalanceNode->rank;
else
BalanceNode->rank-=ModifyNode->rank;
return ModifyNode;
}
TreeNode<T*,D> *_DoubleRotation(TreeNode<T*,D> *BalanceNode, TreeNode<T*,D> *ModifyNode, char factor)
{
TreeNode<T*,D> *DownNode = _FactorLink(ModifyNode, -factor);
TreeNode<T*,D> *Node1, *Node2;
Node1 = _FactorLink(DownNode, factor);
Node2 = _FactorLink(DownNode, -factor);
_FactorLink(ModifyNode, -factor) = Node1;
_FactorLink(DownNode, factor) = ModifyNode;
_FactorLink(BalanceNode, factor) = Node2;
_FactorLink(DownNode, -factor) = BalanceNode;
if (Node1)
Node1->Parent = ModifyNode;
if (Node2)
Node2->Parent = BalanceNode;
DownNode->Parent = BalanceNode->Parent;
BalanceNode->Parent = DownNode;
ModifyNode->Parent = DownNode;
//Set factor according to the result.
if (DownNode->factor == factor) {
BalanceNode->factor = -factor;
ModifyNode->factor = 0;
} else if (DownNode->factor == 0)
BalanceNode->factor = ModifyNode->factor = 0;
else {
BalanceNode->factor = 0;
ModifyNode->factor = factor;
}
DownNode->factor = 0;
if (factor==1) {
ModifyNode->rank -= DownNode->rank;
DownNode->rank += BalanceNode->rank;
} else {
DownNode->rank += ModifyNode->rank;
BalanceNode->rank -= DownNode->rank;
}
return DownNode;
}
TreeNode<T*,D>* &__fastcall _FactorLink(TreeNode<T*,D> *Node, char factor)
//Private helper method to retrieve child according to factor.
//Return right child if factor>0 and left child otherwise.
{ return factor>0? Node->Right : Node->Left; }
void Check()
{
unsigned int k = (unsigned int)head.Right;
unsigned int t = head.Left->height();
if (k != t)
__debugbreak();
}
void _IncreaseHeight()
{
unsigned int k = (unsigned int)head.Right;
head.Right = (TreeNode<T*,D>*)++k;
}
void _DecreaseHeight()
{
unsigned int k = (unsigned int)head.Right;
head.Right = (TreeNode<T*,D>*)--k;
}
};
struct SCMP
{
char operator()(const char *s1,const char *s2)
{
int t = _stricmp(s1, s2);
return t == 0 ? 0 : t > 0 ? 1 :-1;
}
};
struct SCPY { char *operator()(char *dest, const char *src) { return strcpy(dest, src); } };
struct SLEN { int operator()(const char *str) { return strlen(str); } };
struct WCMP
{
char operator()(const wchar_t *s1,const wchar_t *s2)
{
int t =_wcsicmp(s1, s2);
return t == 0 ? 0 : t > 0 ? 1 : -1;
}
};
struct WCPY { wchar_t *operator()(wchar_t *dest, const wchar_t *src) { return wcscpy(dest,src); } };
struct WLEN { int operator()(const wchar_t *str) { return wcslen(str); } };
// EOF