90613f5039
update to ITHVNR 3.5640.1 and translation
589 lines
18 KiB
C++
589 lines
18 KiB
C++
#pragma once
|
|
// avl_p.h
|
|
// 8/23/2013 jichi
|
|
// Branch: ITH/AVL.h, rev 133
|
|
|
|
#include "config.h"
|
|
#include <cstring>
|
|
|
|
enum { STACK_SIZE = 32 };
|
|
|
|
//#ifndef ITH_STACK
|
|
//#define ITH_STACK
|
|
|
|
template<class T, int stack_size>
|
|
class MyStack
|
|
{
|
|
int index;
|
|
T s[stack_size];
|
|
|
|
public:
|
|
MyStack(): index(0)
|
|
{ ::memset(s, 0, sizeof(s)); } // jichi 9/21/2013: assume T is atomic type
|
|
|
|
T &back() { return s[index-1]; }
|
|
int size() { return index; }
|
|
|
|
void push_back(const T &e)
|
|
{
|
|
if (index < stack_size)
|
|
s[index++]=e;
|
|
}
|
|
|
|
void pop_back() { index--; }
|
|
|
|
T &operator[](int i) { return s[i]; }
|
|
};
|
|
//#endif // ITH_STACK
|
|
|
|
// jichi 9/22/2013: T must be a pointer type which can be deleted
|
|
template <class T, class D>
|
|
struct IHFSERVICE TreeNode
|
|
{
|
|
//typedef TreeNode<T, D> Self;
|
|
TreeNode() :
|
|
Left(nullptr), Right(nullptr), Parent(nullptr)
|
|
, rank(1)
|
|
, factor('\0'), reserve('\0')
|
|
//, key()
|
|
//, data()
|
|
{
|
|
::memset(&key, 0, sizeof(key)); // jcihi 9/26/2013: zero memory
|
|
::memset(&data, 0, sizeof(data)); // jcihi 9/26/2013: zero memory
|
|
}
|
|
|
|
TreeNode(const T &k, const D &d) :
|
|
Left(nullptr), Right(nullptr), Parent(nullptr)
|
|
, rank(1)
|
|
, factor('\0'), reserve('\0') // jichi 9/21/2013: zero reserve
|
|
, key(k)
|
|
, data(d)
|
|
{}
|
|
|
|
TreeNode *Successor()
|
|
{
|
|
TreeNode *Node,
|
|
*ParentNode;
|
|
Node = Right;
|
|
if (!Node) {
|
|
Node = this;
|
|
for (;;) {
|
|
ParentNode = Node->Parent;
|
|
if (!ParentNode)
|
|
return nullptr;
|
|
if (ParentNode->Left == Node)
|
|
break;
|
|
Node = ParentNode;
|
|
}
|
|
return ParentNode;
|
|
}
|
|
else
|
|
while (Node->Left)
|
|
Node = Node->Left;
|
|
return Node;
|
|
}
|
|
TreeNode *Predecessor()
|
|
{
|
|
TreeNode *Node,
|
|
*ParentNode;
|
|
Node = Left;
|
|
if (!Node) {
|
|
Node = this;
|
|
for(;;) {
|
|
ParentNode = Node->Parent;
|
|
if (!ParentNode)
|
|
return nullptr;
|
|
if (ParentNode->Right == Node)
|
|
break;
|
|
Node = ParentNode;
|
|
}
|
|
return ParentNode;
|
|
}
|
|
else
|
|
while (Node->Right)
|
|
Node = Node->Right;
|
|
return Node;
|
|
}
|
|
int height()
|
|
{
|
|
if (!this) // jichi 9/26/2013: what?!
|
|
return 0;
|
|
int l = Left->height(),
|
|
r = Right->height(),
|
|
f = factor;
|
|
if (l - r + f != 0)
|
|
__debugbreak();
|
|
f = l > r ? l : r;
|
|
return f + 1;
|
|
}
|
|
TreeNode *Left,
|
|
*Right,
|
|
*Parent;
|
|
unsigned short rank;
|
|
char factor,
|
|
reserve;
|
|
T key;
|
|
D data;
|
|
};
|
|
|
|
template<class T,class D>
|
|
struct NodePath
|
|
{
|
|
NodePath() { ::memset(this, 0, sizeof(NodePath)); } // jichi 11/30/2013: This is the original code in ITH
|
|
NodePath(TreeNode<T,D> *n, int f): Node(n), fact(f) {}
|
|
TreeNode<T,D> *Node;
|
|
union { char factor; int fact; };
|
|
};
|
|
|
|
template <class T, class D, class fComp, class fCopy, class fLength>
|
|
class AVLTree
|
|
{
|
|
protected:
|
|
TreeNode<T*, D> head;
|
|
fComp fCmp;
|
|
fCopy fCpy;
|
|
fLength fLen;
|
|
|
|
public:
|
|
// - Construction -
|
|
AVLTree() {}
|
|
|
|
virtual ~AVLTree() { DeleteAll(); }
|
|
|
|
// - Properties -
|
|
|
|
TreeNode<T*, D> *TreeRoot() const { return head.Left; }
|
|
|
|
// - Actions -
|
|
|
|
void DeleteAll()
|
|
{
|
|
while (head.Left)
|
|
DeleteRoot();
|
|
}
|
|
|
|
TreeNode<T*, D> *Insert(const T *key, const D &data)
|
|
{
|
|
if (head.Left) {
|
|
MyStack<TreeNode<T*, D> *,STACK_SIZE> path;
|
|
TreeNode<T*,D> *DownNode, *ParentNode, *BalanceNode, *TryNode, *NewNode; //P,T,S,Q
|
|
ParentNode = &head;
|
|
path.push_back(ParentNode);
|
|
char factor,f;
|
|
BalanceNode = DownNode = head.Left;
|
|
for (;;) { //The first part of AVL tree insert. Just do as binary tree insert routine and record some nodes.
|
|
factor = fCmp(key,DownNode->key);
|
|
if (factor == 0)
|
|
return DownNode; //Duplicate key. Return and do nothing.
|
|
TryNode = _FactorLink(DownNode, factor);
|
|
if (factor == -1)
|
|
path.push_back(DownNode);
|
|
if (TryNode) { //DownNode has a child.
|
|
if (TryNode->factor != 0) { //Keep track of unbalance node and its parent.
|
|
ParentNode = DownNode;
|
|
BalanceNode = TryNode;
|
|
}
|
|
DownNode = TryNode;
|
|
}
|
|
else
|
|
break; //Finished binary tree search;
|
|
}
|
|
while (path.size()) {
|
|
path.back()->rank++;
|
|
path.pop_back();
|
|
}
|
|
size_t sz = fLen(key) + 1;
|
|
T *new_key = new T[sz];
|
|
::memset(new_key, 0, sz * sizeof(T)); // jichi 9/26/2013: Zero memory
|
|
fCpy(new_key, key);
|
|
TryNode = new TreeNode<T*, D>(new_key, data);
|
|
_FactorLink(DownNode, factor) = TryNode;
|
|
TryNode->Parent = DownNode;
|
|
NewNode = TryNode;
|
|
//Finished binary tree insert. Next to do is to modify balance factors between
|
|
//BalanceNode and the new node.
|
|
TreeNode<T*, D> *ModifyNode;
|
|
factor = fCmp(key, BalanceNode->key);
|
|
//factor=key<BalanceNode->key ? factor=-1:1; //Determine the balance factor at BalanceNode.
|
|
ModifyNode = DownNode = _FactorLink(BalanceNode,factor);
|
|
//ModifyNode will be the 1st child.
|
|
//DownNode will travel from here to the recent inserted node (TryNode).
|
|
while (DownNode != TryNode) { //Check if we reach the bottom.
|
|
f = fCmp(key,DownNode->key);
|
|
//f=_FactorCompare(key,DownNode->key);
|
|
DownNode->factor = f;
|
|
DownNode = _FactorLink(DownNode, f);//Modify balance factor and travels down.
|
|
}
|
|
//Finshed modifying balance factor.
|
|
//Next to do is check the tree if it's unbalance and recover balance.
|
|
if (BalanceNode->factor == 0) { //Tree has grown higher.
|
|
BalanceNode->factor = factor;
|
|
_IncreaseHeight(); //Modify balance factor and increase the height.
|
|
return NewNode;
|
|
}
|
|
if (BalanceNode->factor + factor == 0) { //Tree has gotten more balanced.
|
|
BalanceNode->factor = 0; //Set balance factor to 0.
|
|
return NewNode;
|
|
}
|
|
//Tree has gotten out of balance.
|
|
if (ModifyNode->factor == factor) //A node and its child has same factor. Single rotation.
|
|
DownNode = _SingleRotation(BalanceNode, ModifyNode, factor);
|
|
else //A node and its child has converse factor. Double rotation.
|
|
DownNode = _DoubleRotation(BalanceNode, ModifyNode, factor);
|
|
//Finished the balancing work. Set child field to the root of the new child tree.
|
|
if (BalanceNode == ParentNode->Left)
|
|
ParentNode->Left = DownNode;
|
|
else
|
|
ParentNode->Right = DownNode;
|
|
return NewNode;
|
|
}
|
|
else { //root null?
|
|
size_t sz = fLen(key) + 1;
|
|
T *new_key = new T[sz];
|
|
::memset(new_key, 0, sz * sizeof(T)); // jichi 9/26/2013: Zero memory
|
|
fCpy(new_key, key);
|
|
head.Left = new TreeNode<T *, D>(new_key, data);
|
|
head.rank++;
|
|
_IncreaseHeight();
|
|
return head.Left;
|
|
}
|
|
}
|
|
bool Delete(T *key)
|
|
{
|
|
NodePath<T*,D> PathNode;
|
|
MyStack<NodePath<T*,D>,STACK_SIZE> path; //Use to record a path to the destination node.
|
|
path.push_back(NodePath<T*,D>(&head,-1));
|
|
TreeNode<T*,D> *TryNode,*ChildNode,*BalanceNode,*SuccNode;
|
|
TryNode=head.Left;
|
|
char factor;
|
|
for (;;) { //Search for the
|
|
if (TryNode == 0)
|
|
return false; //Not found.
|
|
factor = fCmp(key, TryNode->key);
|
|
if (factor == 0)
|
|
break; //Key found, continue to delete.
|
|
//factor = _FactorCompare( key, TryNode->key );
|
|
path.push_back(NodePath<T*,D>(TryNode,factor));
|
|
TryNode = _FactorLink(TryNode,factor); //Move to left.
|
|
}
|
|
SuccNode = TryNode->Right; //Find a successor.
|
|
factor = 1;
|
|
if (SuccNode == 0) {
|
|
SuccNode = TryNode->Left;
|
|
factor = -1;
|
|
}
|
|
path.push_back(NodePath<T*,D>(TryNode,factor));
|
|
while (SuccNode) {
|
|
path.push_back(NodePath<T*,D>(SuccNode, -factor));
|
|
SuccNode = _FactorLink(SuccNode,-factor);
|
|
}
|
|
PathNode = path.back();
|
|
delete[] TryNode->key; // jichi 9/22/2013: key is supposed to be an array
|
|
TryNode->key = PathNode.Node->key; //Replace key and data field with the successor or predecessor.
|
|
PathNode.Node->key = nullptr;
|
|
TryNode->data = PathNode.Node->data;
|
|
path.pop_back();
|
|
_FactorLink(path.back().Node,path.back().factor) = _FactorLink(PathNode.Node,-PathNode.factor);
|
|
delete PathNode.Node; //Remove the successor from the tree and release memory.
|
|
PathNode = path.back();
|
|
for (int i=0; i<path.size(); i++)
|
|
if (path[i].factor==-1)
|
|
path[i].Node->rank--;
|
|
for (;;) { //Rebalance the tree along the path back to the root.
|
|
if (path.size()==1) {
|
|
_DecreaseHeight();
|
|
break;
|
|
}
|
|
BalanceNode = PathNode.Node;
|
|
if (BalanceNode->factor == 0) { // A balance node, just need to adjust the factor. Don't have to recurve since subtree height stays.
|
|
BalanceNode->factor=-PathNode.factor;
|
|
break;
|
|
}
|
|
if (BalanceNode->factor == PathNode.factor) { // Node get more balance. Subtree height decrease, need to recurve.
|
|
BalanceNode->factor = 0;
|
|
path.pop_back();
|
|
PathNode = path.back();
|
|
continue;
|
|
}
|
|
//Node get out of balance. Here raises 3 cases.
|
|
ChildNode = _FactorLink(BalanceNode, -PathNode.factor);
|
|
if (ChildNode->factor == 0) { // New case different to insert operation.
|
|
TryNode = _SingleRotation2( BalanceNode, ChildNode, BalanceNode->factor );
|
|
path.pop_back();
|
|
PathNode = path.back();
|
|
_FactorLink(PathNode.Node, PathNode.factor) = TryNode;
|
|
break;
|
|
}
|
|
else {
|
|
if (ChildNode->factor == BalanceNode->factor) // Analogous to insert operation case 1.
|
|
TryNode = _SingleRotation( BalanceNode, ChildNode, BalanceNode->factor );
|
|
else if (ChildNode->factor + BalanceNode->factor == 0) // Analogous to insert operation case 2.
|
|
TryNode = _DoubleRotation( BalanceNode, ChildNode, BalanceNode->factor );
|
|
}
|
|
path.pop_back(); //Recurse back along the path.
|
|
PathNode = path.back();
|
|
_FactorLink(PathNode.Node, PathNode.factor) = TryNode;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
D &operator [](T *key)
|
|
{ return (Insert(key,D())->data); }
|
|
|
|
TreeNode<T*,D> *Search(const T *key)
|
|
{
|
|
TreeNode<T*,D> *Find=head.Left;
|
|
char k;
|
|
while (Find != 0) {//&&Find->key!=key)
|
|
k = fCmp(key, Find->key);
|
|
if (k == 0) break;
|
|
Find = _FactorLink(Find, k);
|
|
}
|
|
return Find;
|
|
}
|
|
|
|
TreeNode<T*,D> *SearchIndex(unsigned int rank)
|
|
{
|
|
unsigned int r = head.rank;
|
|
if (rank == -1)
|
|
return 0;
|
|
if (++rank>=r)
|
|
return 0;
|
|
TreeNode<T*,D> *n=&head;
|
|
while (r!=rank) {
|
|
if (rank>r) {
|
|
n=n->Right;
|
|
rank-=r;
|
|
r=n->rank;
|
|
} else {
|
|
n=n->Left;
|
|
r=n->rank;
|
|
}
|
|
}
|
|
return n;
|
|
}
|
|
|
|
TreeNode<T*,D> *Begin()
|
|
{
|
|
TreeNode<T*,D> *Node = head.Left;
|
|
if (Node)
|
|
while (Node->Left) Node = Node->Left;
|
|
return Node;
|
|
}
|
|
|
|
TreeNode<T*,D> *End()
|
|
{
|
|
TreeNode<T*,D> *Node=head.Left;
|
|
if (Node)
|
|
while (Node->Right) Node = Node->Right;
|
|
return Node;
|
|
}
|
|
unsigned int Count() const { return head.rank - 1; }
|
|
|
|
template <class Fn>
|
|
Fn TraverseTree(Fn &f)
|
|
{ return TraverseTreeNode(head.Left,f); }
|
|
|
|
protected:
|
|
bool DeleteRoot()
|
|
{
|
|
NodePath<T*,D> PathNode;
|
|
MyStack<NodePath<T*,D>,STACK_SIZE> path; //Use to record a path to the destination node.
|
|
path.push_back(NodePath<T*,D>(&head,-1));
|
|
TreeNode<T*,D> *TryNode,*ChildNode,*BalanceNode,*SuccNode;
|
|
TryNode=head.Left;
|
|
char factor;
|
|
SuccNode=TryNode->Right; //Find a successor.
|
|
factor=1;
|
|
if (SuccNode==0)
|
|
{
|
|
SuccNode=TryNode->Left;
|
|
factor=-1;
|
|
}
|
|
path.push_back(NodePath<T*,D>(TryNode,factor));
|
|
while (SuccNode) {
|
|
path.push_back(NodePath<T*,D>(SuccNode,-factor));
|
|
SuccNode=_FactorLink(SuccNode,-factor);
|
|
}
|
|
PathNode=path.back();
|
|
delete[] TryNode->key; // jichi 9/22/2013: key is supposed to be an array
|
|
TryNode->key=PathNode.Node->key; //Replace key and data field with the successor.
|
|
PathNode.Node->key = nullptr;
|
|
TryNode->data=PathNode.Node->data;
|
|
path.pop_back();
|
|
_FactorLink(path.back().Node,path.back().factor) = _FactorLink(PathNode.Node,-PathNode.factor);
|
|
delete PathNode.Node; //Remove the successor from the tree and release memory.
|
|
PathNode=path.back();
|
|
for (int i=0;i<path.size();i++)
|
|
if (path[i].factor==-1)
|
|
path[i].Node->rank--;
|
|
for (;;) { //Rebalance the tree along the path back to the root.
|
|
if (path.size() == 1) {
|
|
_DecreaseHeight();
|
|
break;
|
|
}
|
|
|
|
BalanceNode = PathNode.Node;
|
|
if (BalanceNode->factor == 0) { // A balance node, just need to adjust the factor. Don't have to recurse since subtree height not changed.
|
|
BalanceNode->factor=-PathNode.factor;
|
|
break;
|
|
}
|
|
if (BalanceNode->factor==PathNode.factor) { // Node get more balance. Subtree height decrease, need to recurse.
|
|
BalanceNode->factor=0;
|
|
path.pop_back();
|
|
PathNode=path.back();
|
|
continue;
|
|
}
|
|
//Node get out of balance. Here raises 3 cases.
|
|
ChildNode = _FactorLink(BalanceNode, -PathNode.factor);
|
|
if (ChildNode->factor == 0) { // New case different to insert operation.
|
|
TryNode = _SingleRotation2( BalanceNode, ChildNode, BalanceNode->factor );
|
|
path.pop_back();
|
|
PathNode=path.back();
|
|
_FactorLink(PathNode.Node, PathNode.factor) = TryNode;
|
|
break;
|
|
} else {
|
|
if (ChildNode->factor == BalanceNode->factor) // Analogous to insert operation case 1.
|
|
TryNode = _SingleRotation( BalanceNode, ChildNode, BalanceNode->factor );
|
|
else if (ChildNode->factor + BalanceNode->factor == 0) // Analogous to insert operation case 2.
|
|
TryNode = _DoubleRotation( BalanceNode, ChildNode, BalanceNode->factor );
|
|
}
|
|
path.pop_back(); // Recurve back along the path.
|
|
PathNode=path.back();
|
|
_FactorLink(PathNode.Node, PathNode.factor) = TryNode;
|
|
}
|
|
return true;
|
|
}
|
|
template <class Fn>
|
|
Fn TraverseTreeNode(TreeNode<T*,D> *Node, Fn &f)
|
|
{
|
|
if (Node) {
|
|
if (Node->Left)
|
|
TraverseTreeNode(Node->Left,f);
|
|
f(Node);
|
|
if (Node->Right)
|
|
TraverseTreeNode(Node->Right,f);
|
|
}
|
|
return f;
|
|
}
|
|
TreeNode<T*,D> *_SingleRotation(TreeNode<T*,D> *BalanceNode, TreeNode<T*,D> *ModifyNode, char factor)
|
|
{
|
|
TreeNode<T*,D> *Node = _FactorLink(ModifyNode, -factor);
|
|
_FactorLink(BalanceNode, factor) = Node;
|
|
_FactorLink(ModifyNode, -factor) = BalanceNode;
|
|
if (Node)
|
|
Node->Parent = BalanceNode;
|
|
ModifyNode->Parent = BalanceNode->Parent;
|
|
BalanceNode->Parent = ModifyNode;
|
|
BalanceNode->factor = ModifyNode->factor = 0; //After single rotation, set all factor of 3 node to 0.
|
|
if (factor == 1)
|
|
ModifyNode->rank += BalanceNode->rank;
|
|
else
|
|
BalanceNode->rank -= ModifyNode->rank;
|
|
return ModifyNode;
|
|
}
|
|
TreeNode<T*,D> *_SingleRotation2(TreeNode<T*,D> *BalanceNode, TreeNode<T*,D> *ModifyNode, char factor)
|
|
{
|
|
TreeNode<T*,D> *Node = _FactorLink(ModifyNode, -factor);
|
|
_FactorLink(BalanceNode, factor) = Node;
|
|
_FactorLink(ModifyNode, -factor) = BalanceNode;
|
|
if (Node) Node->Parent = BalanceNode;
|
|
ModifyNode->Parent = BalanceNode->Parent;
|
|
BalanceNode->Parent = ModifyNode;
|
|
ModifyNode->factor = -factor;
|
|
if (factor == 1)
|
|
ModifyNode->rank+=BalanceNode->rank;
|
|
else
|
|
BalanceNode->rank-=ModifyNode->rank;
|
|
return ModifyNode;
|
|
}
|
|
TreeNode<T*,D> *_DoubleRotation(TreeNode<T*,D> *BalanceNode, TreeNode<T*,D> *ModifyNode, char factor)
|
|
{
|
|
TreeNode<T*,D> *DownNode = _FactorLink(ModifyNode, -factor);
|
|
TreeNode<T*,D> *Node1, *Node2;
|
|
Node1 = _FactorLink(DownNode, factor);
|
|
Node2 = _FactorLink(DownNode, -factor);
|
|
_FactorLink(ModifyNode, -factor) = Node1;
|
|
_FactorLink(DownNode, factor) = ModifyNode;
|
|
_FactorLink(BalanceNode, factor) = Node2;
|
|
_FactorLink(DownNode, -factor) = BalanceNode;
|
|
if (Node1)
|
|
Node1->Parent = ModifyNode;
|
|
if (Node2)
|
|
Node2->Parent = BalanceNode;
|
|
DownNode->Parent = BalanceNode->Parent;
|
|
BalanceNode->Parent = DownNode;
|
|
ModifyNode->Parent = DownNode;
|
|
//Set factor according to the result.
|
|
if (DownNode->factor == factor) {
|
|
BalanceNode->factor = -factor;
|
|
ModifyNode->factor = 0;
|
|
} else if (DownNode->factor == 0)
|
|
BalanceNode->factor = ModifyNode->factor = 0;
|
|
else {
|
|
BalanceNode->factor = 0;
|
|
ModifyNode->factor = factor;
|
|
}
|
|
DownNode->factor = 0;
|
|
if (factor==1) {
|
|
ModifyNode->rank -= DownNode->rank;
|
|
DownNode->rank += BalanceNode->rank;
|
|
} else {
|
|
DownNode->rank += ModifyNode->rank;
|
|
BalanceNode->rank -= DownNode->rank;
|
|
}
|
|
return DownNode;
|
|
}
|
|
|
|
TreeNode<T*,D>* &__fastcall _FactorLink(TreeNode<T*,D> *Node, char factor)
|
|
//Private helper method to retrieve child according to factor.
|
|
//Return right child if factor>0 and left child otherwise.
|
|
{ return factor>0? Node->Right : Node->Left; }
|
|
|
|
void Check()
|
|
{
|
|
unsigned int k = (unsigned int)head.Right;
|
|
unsigned int t = head.Left->height();
|
|
if (k != t)
|
|
__debugbreak();
|
|
}
|
|
|
|
void _IncreaseHeight()
|
|
{
|
|
unsigned int k = (unsigned int)head.Right;
|
|
head.Right = (TreeNode<T*,D>*)++k;
|
|
}
|
|
|
|
void _DecreaseHeight()
|
|
{
|
|
unsigned int k = (unsigned int)head.Right;
|
|
head.Right = (TreeNode<T*,D>*)--k;
|
|
}
|
|
};
|
|
|
|
struct SCMP
|
|
{
|
|
char operator()(const char *s1,const char *s2)
|
|
{
|
|
int t = _stricmp(s1, s2);
|
|
return t == 0 ? 0 : t > 0 ? 1 :-1;
|
|
}
|
|
};
|
|
|
|
struct SCPY { char *operator()(char *dest, const char *src) { return strcpy(dest, src); } };
|
|
struct SLEN { int operator()(const char *str) { return strlen(str); } };
|
|
|
|
struct WCMP
|
|
{
|
|
char operator()(const wchar_t *s1,const wchar_t *s2)
|
|
{
|
|
int t =_wcsicmp(s1, s2);
|
|
return t == 0 ? 0 : t > 0 ? 1 : -1;
|
|
}
|
|
};
|
|
|
|
struct WCPY { wchar_t *operator()(wchar_t *dest, const wchar_t *src) { return wcscpy(dest,src); } };
|
|
struct WLEN { int operator()(const wchar_t *str) { return wcslen(str); } };
|
|
|
|
// EOF
|