gbe_fork/mbedtls/aesni.c

803 lines
31 KiB
C
Raw Normal View History

/*
* AES-NI support functions
*
* Copyright The Mbed TLS Contributors
* SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
*/
/*
* [AES-WP] https://www.intel.com/content/www/us/en/developer/articles/tool/intel-advanced-encryption-standard-aes-instructions-set.html
* [CLMUL-WP] https://www.intel.com/content/www/us/en/develop/download/intel-carry-less-multiplication-instruction-and-its-usage-for-computing-the-gcm-mode.html
*/
#include "common.h"
#if defined(MBEDTLS_AESNI_C)
#include "aesni.h"
#include <string.h>
#if defined(MBEDTLS_AESNI_HAVE_CODE)
#if MBEDTLS_AESNI_HAVE_CODE == 2
#if !defined(_WIN32)
#include <cpuid.h>
#else
#include <intrin.h>
#endif
#include <immintrin.h>
#endif
#if !defined(MBEDTLS_AES_USE_HARDWARE_ONLY)
/*
* AES-NI support detection routine
*/
int mbedtls_aesni_has_support(unsigned int what)
{
static int done = 0;
static unsigned int c = 0;
if (!done) {
#if MBEDTLS_AESNI_HAVE_CODE == 2
static unsigned info[4] = { 0, 0, 0, 0 };
#if defined(_MSC_VER)
__cpuid(info, 1);
#else
__cpuid(1, info[0], info[1], info[2], info[3]);
#endif
c = info[2];
#else /* AESNI using asm */
asm ("movl $1, %%eax \n\t"
"cpuid \n\t"
: "=c" (c)
:
: "eax", "ebx", "edx");
#endif /* MBEDTLS_AESNI_HAVE_CODE */
done = 1;
}
return (c & what) != 0;
}
#endif /* !MBEDTLS_AES_USE_HARDWARE_ONLY */
#if MBEDTLS_AESNI_HAVE_CODE == 2
/*
* AES-NI AES-ECB block en(de)cryption
*/
int mbedtls_aesni_crypt_ecb(mbedtls_aes_context *ctx,
int mode,
const unsigned char input[16],
unsigned char output[16])
{
const __m128i *rk = (const __m128i *) (ctx->buf + ctx->rk_offset);
unsigned nr = ctx->nr; // Number of remaining rounds
// Load round key 0
__m128i state;
memcpy(&state, input, 16);
state = _mm_xor_si128(state, rk[0]); // state ^= *rk;
++rk;
--nr;
if (mode == 0) {
while (nr != 0) {
state = _mm_aesdec_si128(state, *rk);
++rk;
--nr;
}
state = _mm_aesdeclast_si128(state, *rk);
} else {
while (nr != 0) {
state = _mm_aesenc_si128(state, *rk);
++rk;
--nr;
}
state = _mm_aesenclast_si128(state, *rk);
}
memcpy(output, &state, 16);
return 0;
}
/*
* GCM multiplication: c = a times b in GF(2^128)
* Based on [CLMUL-WP] algorithms 1 (with equation 27) and 5.
*/
static void gcm_clmul(const __m128i aa, const __m128i bb,
__m128i *cc, __m128i *dd)
{
/*
* Caryless multiplication dd:cc = aa * bb
* using [CLMUL-WP] algorithm 1 (p. 12).
*/
*cc = _mm_clmulepi64_si128(aa, bb, 0x00); // a0*b0 = c1:c0
*dd = _mm_clmulepi64_si128(aa, bb, 0x11); // a1*b1 = d1:d0
__m128i ee = _mm_clmulepi64_si128(aa, bb, 0x10); // a0*b1 = e1:e0
__m128i ff = _mm_clmulepi64_si128(aa, bb, 0x01); // a1*b0 = f1:f0
ff = _mm_xor_si128(ff, ee); // e1+f1:e0+f0
ee = ff; // e1+f1:e0+f0
ff = _mm_srli_si128(ff, 8); // 0:e1+f1
ee = _mm_slli_si128(ee, 8); // e0+f0:0
*dd = _mm_xor_si128(*dd, ff); // d1:d0+e1+f1
*cc = _mm_xor_si128(*cc, ee); // c1+e0+f0:c0
}
static void gcm_shift(__m128i *cc, __m128i *dd)
{
/* [CMUCL-WP] Algorithm 5 Step 1: shift cc:dd one bit to the left,
* taking advantage of [CLMUL-WP] eq 27 (p. 18). */
// // *cc = r1:r0
// // *dd = r3:r2
__m128i cc_lo = _mm_slli_epi64(*cc, 1); // r1<<1:r0<<1
__m128i dd_lo = _mm_slli_epi64(*dd, 1); // r3<<1:r2<<1
__m128i cc_hi = _mm_srli_epi64(*cc, 63); // r1>>63:r0>>63
__m128i dd_hi = _mm_srli_epi64(*dd, 63); // r3>>63:r2>>63
__m128i xmm5 = _mm_srli_si128(cc_hi, 8); // 0:r1>>63
cc_hi = _mm_slli_si128(cc_hi, 8); // r0>>63:0
dd_hi = _mm_slli_si128(dd_hi, 8); // 0:r1>>63
*cc = _mm_or_si128(cc_lo, cc_hi); // r1<<1|r0>>63:r0<<1
*dd = _mm_or_si128(_mm_or_si128(dd_lo, dd_hi), xmm5); // r3<<1|r2>>62:r2<<1|r1>>63
}
static __m128i gcm_reduce(__m128i xx)
{
// // xx = x1:x0
/* [CLMUL-WP] Algorithm 5 Step 2 */
__m128i aa = _mm_slli_epi64(xx, 63); // x1<<63:x0<<63 = stuff:a
__m128i bb = _mm_slli_epi64(xx, 62); // x1<<62:x0<<62 = stuff:b
__m128i cc = _mm_slli_epi64(xx, 57); // x1<<57:x0<<57 = stuff:c
__m128i dd = _mm_slli_si128(_mm_xor_si128(_mm_xor_si128(aa, bb), cc), 8); // a+b+c:0
return _mm_xor_si128(dd, xx); // x1+a+b+c:x0 = d:x0
}
static __m128i gcm_mix(__m128i dx)
{
/* [CLMUL-WP] Algorithm 5 Steps 3 and 4 */
__m128i ee = _mm_srli_epi64(dx, 1); // e1:x0>>1 = e1:e0'
__m128i ff = _mm_srli_epi64(dx, 2); // f1:x0>>2 = f1:f0'
__m128i gg = _mm_srli_epi64(dx, 7); // g1:x0>>7 = g1:g0'
// e0'+f0'+g0' is almost e0+f0+g0, except for some missing
// bits carried from d. Now get those bits back in.
__m128i eh = _mm_slli_epi64(dx, 63); // d<<63:stuff
__m128i fh = _mm_slli_epi64(dx, 62); // d<<62:stuff
__m128i gh = _mm_slli_epi64(dx, 57); // d<<57:stuff
__m128i hh = _mm_srli_si128(_mm_xor_si128(_mm_xor_si128(eh, fh), gh), 8); // 0:missing bits of d
return _mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_xor_si128(ee, ff), gg), hh), dx);
}
void mbedtls_aesni_gcm_mult(unsigned char c[16],
const unsigned char a[16],
const unsigned char b[16])
{
__m128i aa, bb, cc, dd;
/* The inputs are in big-endian order, so byte-reverse them */
for (size_t i = 0; i < 16; i++) {
((uint8_t *) &aa)[i] = a[15 - i];
((uint8_t *) &bb)[i] = b[15 - i];
}
gcm_clmul(aa, bb, &cc, &dd);
gcm_shift(&cc, &dd);
/*
* Now reduce modulo the GCM polynomial x^128 + x^7 + x^2 + x + 1
* using [CLMUL-WP] algorithm 5 (p. 18).
* Currently dd:cc holds x3:x2:x1:x0 (already shifted).
*/
__m128i dx = gcm_reduce(cc);
__m128i xh = gcm_mix(dx);
cc = _mm_xor_si128(xh, dd); // x3+h1:x2+h0
/* Now byte-reverse the outputs */
for (size_t i = 0; i < 16; i++) {
c[i] = ((uint8_t *) &cc)[15 - i];
}
return;
}
/*
* Compute decryption round keys from encryption round keys
*/
void mbedtls_aesni_inverse_key(unsigned char *invkey,
const unsigned char *fwdkey, int nr)
{
__m128i *ik = (__m128i *) invkey;
const __m128i *fk = (const __m128i *) fwdkey + nr;
*ik = *fk;
for (--fk, ++ik; fk > (const __m128i *) fwdkey; --fk, ++ik) {
*ik = _mm_aesimc_si128(*fk);
}
*ik = *fk;
}
/*
* Key expansion, 128-bit case
*/
static __m128i aesni_set_rk_128(__m128i state, __m128i xword)
{
/*
* Finish generating the next round key.
*
* On entry state is r3:r2:r1:r0 and xword is X:stuff:stuff:stuff
* with X = rot( sub( r3 ) ) ^ RCON (obtained with AESKEYGENASSIST).
*
* On exit, xword is r7:r6:r5:r4
* with r4 = X + r0, r5 = r4 + r1, r6 = r5 + r2, r7 = r6 + r3
* and this is returned, to be written to the round key buffer.
*/
xword = _mm_shuffle_epi32(xword, 0xff); // X:X:X:X
xword = _mm_xor_si128(xword, state); // X+r3:X+r2:X+r1:r4
state = _mm_slli_si128(state, 4); // r2:r1:r0:0
xword = _mm_xor_si128(xword, state); // X+r3+r2:X+r2+r1:r5:r4
state = _mm_slli_si128(state, 4); // r1:r0:0:0
xword = _mm_xor_si128(xword, state); // X+r3+r2+r1:r6:r5:r4
state = _mm_slli_si128(state, 4); // r0:0:0:0
state = _mm_xor_si128(xword, state); // r7:r6:r5:r4
return state;
}
static void aesni_setkey_enc_128(unsigned char *rk_bytes,
const unsigned char *key)
{
__m128i *rk = (__m128i *) rk_bytes;
memcpy(&rk[0], key, 16);
rk[1] = aesni_set_rk_128(rk[0], _mm_aeskeygenassist_si128(rk[0], 0x01));
rk[2] = aesni_set_rk_128(rk[1], _mm_aeskeygenassist_si128(rk[1], 0x02));
rk[3] = aesni_set_rk_128(rk[2], _mm_aeskeygenassist_si128(rk[2], 0x04));
rk[4] = aesni_set_rk_128(rk[3], _mm_aeskeygenassist_si128(rk[3], 0x08));
rk[5] = aesni_set_rk_128(rk[4], _mm_aeskeygenassist_si128(rk[4], 0x10));
rk[6] = aesni_set_rk_128(rk[5], _mm_aeskeygenassist_si128(rk[5], 0x20));
rk[7] = aesni_set_rk_128(rk[6], _mm_aeskeygenassist_si128(rk[6], 0x40));
rk[8] = aesni_set_rk_128(rk[7], _mm_aeskeygenassist_si128(rk[7], 0x80));
rk[9] = aesni_set_rk_128(rk[8], _mm_aeskeygenassist_si128(rk[8], 0x1B));
rk[10] = aesni_set_rk_128(rk[9], _mm_aeskeygenassist_si128(rk[9], 0x36));
}
/*
* Key expansion, 192-bit case
*/
#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
static void aesni_set_rk_192(__m128i *state0, __m128i *state1, __m128i xword,
unsigned char *rk)
{
/*
* Finish generating the next 6 quarter-keys.
*
* On entry state0 is r3:r2:r1:r0, state1 is stuff:stuff:r5:r4
* and xword is stuff:stuff:X:stuff with X = rot( sub( r3 ) ) ^ RCON
* (obtained with AESKEYGENASSIST).
*
* On exit, state0 is r9:r8:r7:r6 and state1 is stuff:stuff:r11:r10
* and those are written to the round key buffer.
*/
xword = _mm_shuffle_epi32(xword, 0x55); // X:X:X:X
xword = _mm_xor_si128(xword, *state0); // X+r3:X+r2:X+r1:X+r0
*state0 = _mm_slli_si128(*state0, 4); // r2:r1:r0:0
xword = _mm_xor_si128(xword, *state0); // X+r3+r2:X+r2+r1:X+r1+r0:X+r0
*state0 = _mm_slli_si128(*state0, 4); // r1:r0:0:0
xword = _mm_xor_si128(xword, *state0); // X+r3+r2+r1:X+r2+r1+r0:X+r1+r0:X+r0
*state0 = _mm_slli_si128(*state0, 4); // r0:0:0:0
xword = _mm_xor_si128(xword, *state0); // X+r3+r2+r1+r0:X+r2+r1+r0:X+r1+r0:X+r0
*state0 = xword; // = r9:r8:r7:r6
xword = _mm_shuffle_epi32(xword, 0xff); // r9:r9:r9:r9
xword = _mm_xor_si128(xword, *state1); // stuff:stuff:r9+r5:r9+r4
*state1 = _mm_slli_si128(*state1, 4); // stuff:stuff:r4:0
xword = _mm_xor_si128(xword, *state1); // stuff:stuff:r9+r5+r4:r9+r4
*state1 = xword; // = stuff:stuff:r11:r10
/* Store state0 and the low half of state1 into rk, which is conceptually
* an array of 24-byte elements. Since 24 is not a multiple of 16,
* rk is not necessarily aligned so just `*rk = *state0` doesn't work. */
memcpy(rk, state0, 16);
memcpy(rk + 16, state1, 8);
}
static void aesni_setkey_enc_192(unsigned char *rk,
const unsigned char *key)
{
/* First round: use original key */
memcpy(rk, key, 24);
/* aes.c guarantees that rk is aligned on a 16-byte boundary. */
__m128i state0 = ((__m128i *) rk)[0];
__m128i state1 = _mm_loadl_epi64(((__m128i *) rk) + 1);
aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x01), rk + 24 * 1);
aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x02), rk + 24 * 2);
aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x04), rk + 24 * 3);
aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x08), rk + 24 * 4);
aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x10), rk + 24 * 5);
aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x20), rk + 24 * 6);
aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x40), rk + 24 * 7);
aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x80), rk + 24 * 8);
}
#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
/*
* Key expansion, 256-bit case
*/
#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
static void aesni_set_rk_256(__m128i state0, __m128i state1, __m128i xword,
__m128i *rk0, __m128i *rk1)
{
/*
* Finish generating the next two round keys.
*
* On entry state0 is r3:r2:r1:r0, state1 is r7:r6:r5:r4 and
* xword is X:stuff:stuff:stuff with X = rot( sub( r7 )) ^ RCON
* (obtained with AESKEYGENASSIST).
*
* On exit, *rk0 is r11:r10:r9:r8 and *rk1 is r15:r14:r13:r12
*/
xword = _mm_shuffle_epi32(xword, 0xff);
xword = _mm_xor_si128(xword, state0);
state0 = _mm_slli_si128(state0, 4);
xword = _mm_xor_si128(xword, state0);
state0 = _mm_slli_si128(state0, 4);
xword = _mm_xor_si128(xword, state0);
state0 = _mm_slli_si128(state0, 4);
state0 = _mm_xor_si128(state0, xword);
*rk0 = state0;
/* Set xword to stuff:Y:stuff:stuff with Y = subword( r11 )
* and proceed to generate next round key from there */
xword = _mm_aeskeygenassist_si128(state0, 0x00);
xword = _mm_shuffle_epi32(xword, 0xaa);
xword = _mm_xor_si128(xword, state1);
state1 = _mm_slli_si128(state1, 4);
xword = _mm_xor_si128(xword, state1);
state1 = _mm_slli_si128(state1, 4);
xword = _mm_xor_si128(xword, state1);
state1 = _mm_slli_si128(state1, 4);
state1 = _mm_xor_si128(state1, xword);
*rk1 = state1;
}
static void aesni_setkey_enc_256(unsigned char *rk_bytes,
const unsigned char *key)
{
__m128i *rk = (__m128i *) rk_bytes;
memcpy(&rk[0], key, 16);
memcpy(&rk[1], key + 16, 16);
/*
* Main "loop" - Generating one more key than necessary,
* see definition of mbedtls_aes_context.buf
*/
aesni_set_rk_256(rk[0], rk[1], _mm_aeskeygenassist_si128(rk[1], 0x01), &rk[2], &rk[3]);
aesni_set_rk_256(rk[2], rk[3], _mm_aeskeygenassist_si128(rk[3], 0x02), &rk[4], &rk[5]);
aesni_set_rk_256(rk[4], rk[5], _mm_aeskeygenassist_si128(rk[5], 0x04), &rk[6], &rk[7]);
aesni_set_rk_256(rk[6], rk[7], _mm_aeskeygenassist_si128(rk[7], 0x08), &rk[8], &rk[9]);
aesni_set_rk_256(rk[8], rk[9], _mm_aeskeygenassist_si128(rk[9], 0x10), &rk[10], &rk[11]);
aesni_set_rk_256(rk[10], rk[11], _mm_aeskeygenassist_si128(rk[11], 0x20), &rk[12], &rk[13]);
aesni_set_rk_256(rk[12], rk[13], _mm_aeskeygenassist_si128(rk[13], 0x40), &rk[14], &rk[15]);
}
#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
#else /* MBEDTLS_AESNI_HAVE_CODE == 1 */
#if defined(__has_feature)
#if __has_feature(memory_sanitizer)
#warning \
"MBEDTLS_AESNI_C is known to cause spurious error reports with some memory sanitizers as they do not understand the assembly code."
#endif
#endif
/*
* Binutils needs to be at least 2.19 to support AES-NI instructions.
* Unfortunately, a lot of users have a lower version now (2014-04).
* Emit bytecode directly in order to support "old" version of gas.
*
* Opcodes from the Intel architecture reference manual, vol. 3.
* We always use registers, so we don't need prefixes for memory operands.
* Operand macros are in gas order (src, dst) as opposed to Intel order
* (dst, src) in order to blend better into the surrounding assembly code.
*/
#define AESDEC(regs) ".byte 0x66,0x0F,0x38,0xDE," regs "\n\t"
#define AESDECLAST(regs) ".byte 0x66,0x0F,0x38,0xDF," regs "\n\t"
#define AESENC(regs) ".byte 0x66,0x0F,0x38,0xDC," regs "\n\t"
#define AESENCLAST(regs) ".byte 0x66,0x0F,0x38,0xDD," regs "\n\t"
#define AESIMC(regs) ".byte 0x66,0x0F,0x38,0xDB," regs "\n\t"
#define AESKEYGENA(regs, imm) ".byte 0x66,0x0F,0x3A,0xDF," regs "," imm "\n\t"
#define PCLMULQDQ(regs, imm) ".byte 0x66,0x0F,0x3A,0x44," regs "," imm "\n\t"
#define xmm0_xmm0 "0xC0"
#define xmm0_xmm1 "0xC8"
#define xmm0_xmm2 "0xD0"
#define xmm0_xmm3 "0xD8"
#define xmm0_xmm4 "0xE0"
#define xmm1_xmm0 "0xC1"
#define xmm1_xmm2 "0xD1"
/*
* AES-NI AES-ECB block en(de)cryption
*/
int mbedtls_aesni_crypt_ecb(mbedtls_aes_context *ctx,
int mode,
const unsigned char input[16],
unsigned char output[16])
{
asm ("movdqu (%3), %%xmm0 \n\t" // load input
"movdqu (%1), %%xmm1 \n\t" // load round key 0
"pxor %%xmm1, %%xmm0 \n\t" // round 0
"add $16, %1 \n\t" // point to next round key
"subl $1, %0 \n\t" // normal rounds = nr - 1
"test %2, %2 \n\t" // mode?
"jz 2f \n\t" // 0 = decrypt
"1: \n\t" // encryption loop
"movdqu (%1), %%xmm1 \n\t" // load round key
AESENC(xmm1_xmm0) // do round
"add $16, %1 \n\t" // point to next round key
"subl $1, %0 \n\t" // loop
"jnz 1b \n\t"
"movdqu (%1), %%xmm1 \n\t" // load round key
AESENCLAST(xmm1_xmm0) // last round
"jmp 3f \n\t"
"2: \n\t" // decryption loop
"movdqu (%1), %%xmm1 \n\t"
AESDEC(xmm1_xmm0) // do round
"add $16, %1 \n\t"
"subl $1, %0 \n\t"
"jnz 2b \n\t"
"movdqu (%1), %%xmm1 \n\t" // load round key
AESDECLAST(xmm1_xmm0) // last round
"3: \n\t"
"movdqu %%xmm0, (%4) \n\t" // export output
:
: "r" (ctx->nr), "r" (ctx->buf + ctx->rk_offset), "r" (mode), "r" (input), "r" (output)
: "memory", "cc", "xmm0", "xmm1");
return 0;
}
/*
* GCM multiplication: c = a times b in GF(2^128)
* Based on [CLMUL-WP] algorithms 1 (with equation 27) and 5.
*/
void mbedtls_aesni_gcm_mult(unsigned char c[16],
const unsigned char a[16],
const unsigned char b[16])
{
unsigned char aa[16], bb[16], cc[16];
size_t i;
/* The inputs are in big-endian order, so byte-reverse them */
for (i = 0; i < 16; i++) {
aa[i] = a[15 - i];
bb[i] = b[15 - i];
}
asm ("movdqu (%0), %%xmm0 \n\t" // a1:a0
"movdqu (%1), %%xmm1 \n\t" // b1:b0
/*
* Caryless multiplication xmm2:xmm1 = xmm0 * xmm1
* using [CLMUL-WP] algorithm 1 (p. 12).
*/
"movdqa %%xmm1, %%xmm2 \n\t" // copy of b1:b0
"movdqa %%xmm1, %%xmm3 \n\t" // same
"movdqa %%xmm1, %%xmm4 \n\t" // same
PCLMULQDQ(xmm0_xmm1, "0x00") // a0*b0 = c1:c0
PCLMULQDQ(xmm0_xmm2, "0x11") // a1*b1 = d1:d0
PCLMULQDQ(xmm0_xmm3, "0x10") // a0*b1 = e1:e0
PCLMULQDQ(xmm0_xmm4, "0x01") // a1*b0 = f1:f0
"pxor %%xmm3, %%xmm4 \n\t" // e1+f1:e0+f0
"movdqa %%xmm4, %%xmm3 \n\t" // same
"psrldq $8, %%xmm4 \n\t" // 0:e1+f1
"pslldq $8, %%xmm3 \n\t" // e0+f0:0
"pxor %%xmm4, %%xmm2 \n\t" // d1:d0+e1+f1
"pxor %%xmm3, %%xmm1 \n\t" // c1+e0+f1:c0
/*
* Now shift the result one bit to the left,
* taking advantage of [CLMUL-WP] eq 27 (p. 18)
*/
"movdqa %%xmm1, %%xmm3 \n\t" // r1:r0
"movdqa %%xmm2, %%xmm4 \n\t" // r3:r2
"psllq $1, %%xmm1 \n\t" // r1<<1:r0<<1
"psllq $1, %%xmm2 \n\t" // r3<<1:r2<<1
"psrlq $63, %%xmm3 \n\t" // r1>>63:r0>>63
"psrlq $63, %%xmm4 \n\t" // r3>>63:r2>>63
"movdqa %%xmm3, %%xmm5 \n\t" // r1>>63:r0>>63
"pslldq $8, %%xmm3 \n\t" // r0>>63:0
"pslldq $8, %%xmm4 \n\t" // r2>>63:0
"psrldq $8, %%xmm5 \n\t" // 0:r1>>63
"por %%xmm3, %%xmm1 \n\t" // r1<<1|r0>>63:r0<<1
"por %%xmm4, %%xmm2 \n\t" // r3<<1|r2>>62:r2<<1
"por %%xmm5, %%xmm2 \n\t" // r3<<1|r2>>62:r2<<1|r1>>63
/*
* Now reduce modulo the GCM polynomial x^128 + x^7 + x^2 + x + 1
* using [CLMUL-WP] algorithm 5 (p. 18).
* Currently xmm2:xmm1 holds x3:x2:x1:x0 (already shifted).
*/
/* Step 2 (1) */
"movdqa %%xmm1, %%xmm3 \n\t" // x1:x0
"movdqa %%xmm1, %%xmm4 \n\t" // same
"movdqa %%xmm1, %%xmm5 \n\t" // same
"psllq $63, %%xmm3 \n\t" // x1<<63:x0<<63 = stuff:a
"psllq $62, %%xmm4 \n\t" // x1<<62:x0<<62 = stuff:b
"psllq $57, %%xmm5 \n\t" // x1<<57:x0<<57 = stuff:c
/* Step 2 (2) */
"pxor %%xmm4, %%xmm3 \n\t" // stuff:a+b
"pxor %%xmm5, %%xmm3 \n\t" // stuff:a+b+c
"pslldq $8, %%xmm3 \n\t" // a+b+c:0
"pxor %%xmm3, %%xmm1 \n\t" // x1+a+b+c:x0 = d:x0
/* Steps 3 and 4 */
"movdqa %%xmm1,%%xmm0 \n\t" // d:x0
"movdqa %%xmm1,%%xmm4 \n\t" // same
"movdqa %%xmm1,%%xmm5 \n\t" // same
"psrlq $1, %%xmm0 \n\t" // e1:x0>>1 = e1:e0'
"psrlq $2, %%xmm4 \n\t" // f1:x0>>2 = f1:f0'
"psrlq $7, %%xmm5 \n\t" // g1:x0>>7 = g1:g0'
"pxor %%xmm4, %%xmm0 \n\t" // e1+f1:e0'+f0'
"pxor %%xmm5, %%xmm0 \n\t" // e1+f1+g1:e0'+f0'+g0'
// e0'+f0'+g0' is almost e0+f0+g0, ex\tcept for some missing
// bits carried from d. Now get those\t bits back in.
"movdqa %%xmm1,%%xmm3 \n\t" // d:x0
"movdqa %%xmm1,%%xmm4 \n\t" // same
"movdqa %%xmm1,%%xmm5 \n\t" // same
"psllq $63, %%xmm3 \n\t" // d<<63:stuff
"psllq $62, %%xmm4 \n\t" // d<<62:stuff
"psllq $57, %%xmm5 \n\t" // d<<57:stuff
"pxor %%xmm4, %%xmm3 \n\t" // d<<63+d<<62:stuff
"pxor %%xmm5, %%xmm3 \n\t" // missing bits of d:stuff
"psrldq $8, %%xmm3 \n\t" // 0:missing bits of d
"pxor %%xmm3, %%xmm0 \n\t" // e1+f1+g1:e0+f0+g0
"pxor %%xmm1, %%xmm0 \n\t" // h1:h0
"pxor %%xmm2, %%xmm0 \n\t" // x3+h1:x2+h0
"movdqu %%xmm0, (%2) \n\t" // done
:
: "r" (aa), "r" (bb), "r" (cc)
: "memory", "cc", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5");
/* Now byte-reverse the outputs */
for (i = 0; i < 16; i++) {
c[i] = cc[15 - i];
}
return;
}
/*
* Compute decryption round keys from encryption round keys
*/
void mbedtls_aesni_inverse_key(unsigned char *invkey,
const unsigned char *fwdkey, int nr)
{
unsigned char *ik = invkey;
const unsigned char *fk = fwdkey + 16 * nr;
memcpy(ik, fk, 16);
for (fk -= 16, ik += 16; fk > fwdkey; fk -= 16, ik += 16) {
asm ("movdqu (%0), %%xmm0 \n\t"
AESIMC(xmm0_xmm0)
"movdqu %%xmm0, (%1) \n\t"
:
: "r" (fk), "r" (ik)
: "memory", "xmm0");
}
memcpy(ik, fk, 16);
}
/*
* Key expansion, 128-bit case
*/
static void aesni_setkey_enc_128(unsigned char *rk,
const unsigned char *key)
{
asm ("movdqu (%1), %%xmm0 \n\t" // copy the original key
"movdqu %%xmm0, (%0) \n\t" // as round key 0
"jmp 2f \n\t" // skip auxiliary routine
/*
* Finish generating the next round key.
*
* On entry xmm0 is r3:r2:r1:r0 and xmm1 is X:stuff:stuff:stuff
* with X = rot( sub( r3 ) ) ^ RCON.
*
* On exit, xmm0 is r7:r6:r5:r4
* with r4 = X + r0, r5 = r4 + r1, r6 = r5 + r2, r7 = r6 + r3
* and those are written to the round key buffer.
*/
"1: \n\t"
"pshufd $0xff, %%xmm1, %%xmm1 \n\t" // X:X:X:X
"pxor %%xmm0, %%xmm1 \n\t" // X+r3:X+r2:X+r1:r4
"pslldq $4, %%xmm0 \n\t" // r2:r1:r0:0
"pxor %%xmm0, %%xmm1 \n\t" // X+r3+r2:X+r2+r1:r5:r4
"pslldq $4, %%xmm0 \n\t" // etc
"pxor %%xmm0, %%xmm1 \n\t"
"pslldq $4, %%xmm0 \n\t"
"pxor %%xmm1, %%xmm0 \n\t" // update xmm0 for next time!
"add $16, %0 \n\t" // point to next round key
"movdqu %%xmm0, (%0) \n\t" // write it
"ret \n\t"
/* Main "loop" */
"2: \n\t"
AESKEYGENA(xmm0_xmm1, "0x01") "call 1b \n\t"
AESKEYGENA(xmm0_xmm1, "0x02") "call 1b \n\t"
AESKEYGENA(xmm0_xmm1, "0x04") "call 1b \n\t"
AESKEYGENA(xmm0_xmm1, "0x08") "call 1b \n\t"
AESKEYGENA(xmm0_xmm1, "0x10") "call 1b \n\t"
AESKEYGENA(xmm0_xmm1, "0x20") "call 1b \n\t"
AESKEYGENA(xmm0_xmm1, "0x40") "call 1b \n\t"
AESKEYGENA(xmm0_xmm1, "0x80") "call 1b \n\t"
AESKEYGENA(xmm0_xmm1, "0x1B") "call 1b \n\t"
AESKEYGENA(xmm0_xmm1, "0x36") "call 1b \n\t"
:
: "r" (rk), "r" (key)
: "memory", "cc", "0");
}
/*
* Key expansion, 192-bit case
*/
#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
static void aesni_setkey_enc_192(unsigned char *rk,
const unsigned char *key)
{
asm ("movdqu (%1), %%xmm0 \n\t" // copy original round key
"movdqu %%xmm0, (%0) \n\t"
"add $16, %0 \n\t"
"movq 16(%1), %%xmm1 \n\t"
"movq %%xmm1, (%0) \n\t"
"add $8, %0 \n\t"
"jmp 2f \n\t" // skip auxiliary routine
/*
* Finish generating the next 6 quarter-keys.
*
* On entry xmm0 is r3:r2:r1:r0, xmm1 is stuff:stuff:r5:r4
* and xmm2 is stuff:stuff:X:stuff with X = rot( sub( r3 ) ) ^ RCON.
*
* On exit, xmm0 is r9:r8:r7:r6 and xmm1 is stuff:stuff:r11:r10
* and those are written to the round key buffer.
*/
"1: \n\t"
"pshufd $0x55, %%xmm2, %%xmm2 \n\t" // X:X:X:X
"pxor %%xmm0, %%xmm2 \n\t" // X+r3:X+r2:X+r1:r4
"pslldq $4, %%xmm0 \n\t" // etc
"pxor %%xmm0, %%xmm2 \n\t"
"pslldq $4, %%xmm0 \n\t"
"pxor %%xmm0, %%xmm2 \n\t"
"pslldq $4, %%xmm0 \n\t"
"pxor %%xmm2, %%xmm0 \n\t" // update xmm0 = r9:r8:r7:r6
"movdqu %%xmm0, (%0) \n\t"
"add $16, %0 \n\t"
"pshufd $0xff, %%xmm0, %%xmm2 \n\t" // r9:r9:r9:r9
"pxor %%xmm1, %%xmm2 \n\t" // stuff:stuff:r9+r5:r10
"pslldq $4, %%xmm1 \n\t" // r2:r1:r0:0
"pxor %%xmm2, %%xmm1 \n\t" // xmm1 = stuff:stuff:r11:r10
"movq %%xmm1, (%0) \n\t"
"add $8, %0 \n\t"
"ret \n\t"
"2: \n\t"
AESKEYGENA(xmm1_xmm2, "0x01") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x02") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x04") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x08") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x10") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x20") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x40") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x80") "call 1b \n\t"
:
: "r" (rk), "r" (key)
: "memory", "cc", "0");
}
#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
/*
* Key expansion, 256-bit case
*/
#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
static void aesni_setkey_enc_256(unsigned char *rk,
const unsigned char *key)
{
asm ("movdqu (%1), %%xmm0 \n\t"
"movdqu %%xmm0, (%0) \n\t"
"add $16, %0 \n\t"
"movdqu 16(%1), %%xmm1 \n\t"
"movdqu %%xmm1, (%0) \n\t"
"jmp 2f \n\t" // skip auxiliary routine
/*
* Finish generating the next two round keys.
*
* On entry xmm0 is r3:r2:r1:r0, xmm1 is r7:r6:r5:r4 and
* xmm2 is X:stuff:stuff:stuff with X = rot( sub( r7 )) ^ RCON
*
* On exit, xmm0 is r11:r10:r9:r8 and xmm1 is r15:r14:r13:r12
* and those have been written to the output buffer.
*/
"1: \n\t"
"pshufd $0xff, %%xmm2, %%xmm2 \n\t"
"pxor %%xmm0, %%xmm2 \n\t"
"pslldq $4, %%xmm0 \n\t"
"pxor %%xmm0, %%xmm2 \n\t"
"pslldq $4, %%xmm0 \n\t"
"pxor %%xmm0, %%xmm2 \n\t"
"pslldq $4, %%xmm0 \n\t"
"pxor %%xmm2, %%xmm0 \n\t"
"add $16, %0 \n\t"
"movdqu %%xmm0, (%0) \n\t"
/* Set xmm2 to stuff:Y:stuff:stuff with Y = subword( r11 )
* and proceed to generate next round key from there */
AESKEYGENA(xmm0_xmm2, "0x00")
"pshufd $0xaa, %%xmm2, %%xmm2 \n\t"
"pxor %%xmm1, %%xmm2 \n\t"
"pslldq $4, %%xmm1 \n\t"
"pxor %%xmm1, %%xmm2 \n\t"
"pslldq $4, %%xmm1 \n\t"
"pxor %%xmm1, %%xmm2 \n\t"
"pslldq $4, %%xmm1 \n\t"
"pxor %%xmm2, %%xmm1 \n\t"
"add $16, %0 \n\t"
"movdqu %%xmm1, (%0) \n\t"
"ret \n\t"
/*
* Main "loop" - Generating one more key than necessary,
* see definition of mbedtls_aes_context.buf
*/
"2: \n\t"
AESKEYGENA(xmm1_xmm2, "0x01") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x02") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x04") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x08") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x10") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x20") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x40") "call 1b \n\t"
:
: "r" (rk), "r" (key)
: "memory", "cc", "0");
}
#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
#endif /* MBEDTLS_AESNI_HAVE_CODE */
/*
* Key expansion, wrapper
*/
int mbedtls_aesni_setkey_enc(unsigned char *rk,
const unsigned char *key,
size_t bits)
{
switch (bits) {
case 128: aesni_setkey_enc_128(rk, key); break;
#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
case 192: aesni_setkey_enc_192(rk, key); break;
case 256: aesni_setkey_enc_256(rk, key); break;
#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
default: return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
}
return 0;
}
#endif /* MBEDTLS_AESNI_HAVE_CODE */
#endif /* MBEDTLS_AESNI_C */