mirror of
https://github.com/Detanup01/gbe_fork.git
synced 2024-12-31 04:44:16 +08:00
288 lines
10 KiB
C
288 lines
10 KiB
C
/**
|
|
* \file ecp_internal_alt.h
|
|
*
|
|
* \brief Function declarations for alternative implementation of elliptic curve
|
|
* point arithmetic.
|
|
*/
|
|
/*
|
|
* Copyright The Mbed TLS Contributors
|
|
* SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
|
|
*/
|
|
|
|
/*
|
|
* References:
|
|
*
|
|
* [1] BERNSTEIN, Daniel J. Curve25519: new Diffie-Hellman speed records.
|
|
* <http://cr.yp.to/ecdh/curve25519-20060209.pdf>
|
|
*
|
|
* [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
|
|
* for elliptic curve cryptosystems. In : Cryptographic Hardware and
|
|
* Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
|
|
* <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
|
|
*
|
|
* [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to
|
|
* render ECC resistant against Side Channel Attacks. IACR Cryptology
|
|
* ePrint Archive, 2004, vol. 2004, p. 342.
|
|
* <http://eprint.iacr.org/2004/342.pdf>
|
|
*
|
|
* [4] Certicom Research. SEC 2: Recommended Elliptic Curve Domain Parameters.
|
|
* <http://www.secg.org/sec2-v2.pdf>
|
|
*
|
|
* [5] HANKERSON, Darrel, MENEZES, Alfred J., VANSTONE, Scott. Guide to Elliptic
|
|
* Curve Cryptography.
|
|
*
|
|
* [6] Digital Signature Standard (DSS), FIPS 186-4.
|
|
* <http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf>
|
|
*
|
|
* [7] Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer
|
|
* Security (TLS), RFC 4492.
|
|
* <https://tools.ietf.org/search/rfc4492>
|
|
*
|
|
* [8] <http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html>
|
|
*
|
|
* [9] COHEN, Henri. A Course in Computational Algebraic Number Theory.
|
|
* Springer Science & Business Media, 1 Aug 2000
|
|
*/
|
|
|
|
#ifndef MBEDTLS_ECP_INTERNAL_H
|
|
#define MBEDTLS_ECP_INTERNAL_H
|
|
|
|
#include "mbedtls/build_info.h"
|
|
|
|
#if defined(MBEDTLS_ECP_INTERNAL_ALT)
|
|
|
|
/**
|
|
* \brief Indicate if the Elliptic Curve Point module extension can
|
|
* handle the group.
|
|
*
|
|
* \param grp The pointer to the elliptic curve group that will be the
|
|
* basis of the cryptographic computations.
|
|
*
|
|
* \return Non-zero if successful.
|
|
*/
|
|
unsigned char mbedtls_internal_ecp_grp_capable(const mbedtls_ecp_group *grp);
|
|
|
|
/**
|
|
* \brief Initialise the Elliptic Curve Point module extension.
|
|
*
|
|
* If mbedtls_internal_ecp_grp_capable returns true for a
|
|
* group, this function has to be able to initialise the
|
|
* module for it.
|
|
*
|
|
* This module can be a driver to a crypto hardware
|
|
* accelerator, for which this could be an initialise function.
|
|
*
|
|
* \param grp The pointer to the group the module needs to be
|
|
* initialised for.
|
|
*
|
|
* \return 0 if successful.
|
|
*/
|
|
int mbedtls_internal_ecp_init(const mbedtls_ecp_group *grp);
|
|
|
|
/**
|
|
* \brief Frees and deallocates the Elliptic Curve Point module
|
|
* extension.
|
|
*
|
|
* \param grp The pointer to the group the module was initialised for.
|
|
*/
|
|
void mbedtls_internal_ecp_free(const mbedtls_ecp_group *grp);
|
|
|
|
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
|
|
|
|
#if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
|
|
/**
|
|
* \brief Randomize jacobian coordinates:
|
|
* (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l.
|
|
*
|
|
* \param grp Pointer to the group representing the curve.
|
|
*
|
|
* \param pt The point on the curve to be randomised, given with Jacobian
|
|
* coordinates.
|
|
*
|
|
* \param f_rng A function pointer to the random number generator.
|
|
*
|
|
* \param p_rng A pointer to the random number generator state.
|
|
*
|
|
* \return 0 if successful.
|
|
*/
|
|
int mbedtls_internal_ecp_randomize_jac(const mbedtls_ecp_group *grp,
|
|
mbedtls_ecp_point *pt, int (*f_rng)(void *,
|
|
unsigned char *,
|
|
size_t),
|
|
void *p_rng);
|
|
#endif
|
|
|
|
#if defined(MBEDTLS_ECP_ADD_MIXED_ALT)
|
|
/**
|
|
* \brief Addition: R = P + Q, mixed affine-Jacobian coordinates.
|
|
*
|
|
* The coordinates of Q must be normalized (= affine),
|
|
* but those of P don't need to. R is not normalized.
|
|
*
|
|
* This function is used only as a subrutine of
|
|
* ecp_mul_comb().
|
|
*
|
|
* Special cases: (1) P or Q is zero, (2) R is zero,
|
|
* (3) P == Q.
|
|
* None of these cases can happen as intermediate step in
|
|
* ecp_mul_comb():
|
|
* - at each step, P, Q and R are multiples of the base
|
|
* point, the factor being less than its order, so none of
|
|
* them is zero;
|
|
* - Q is an odd multiple of the base point, P an even
|
|
* multiple, due to the choice of precomputed points in the
|
|
* modified comb method.
|
|
* So branches for these cases do not leak secret information.
|
|
*
|
|
* We accept Q->Z being unset (saving memory in tables) as
|
|
* meaning 1.
|
|
*
|
|
* Cost in field operations if done by [5] 3.22:
|
|
* 1A := 8M + 3S
|
|
*
|
|
* \param grp Pointer to the group representing the curve.
|
|
*
|
|
* \param R Pointer to a point structure to hold the result.
|
|
*
|
|
* \param P Pointer to the first summand, given with Jacobian
|
|
* coordinates
|
|
*
|
|
* \param Q Pointer to the second summand, given with affine
|
|
* coordinates.
|
|
*
|
|
* \return 0 if successful.
|
|
*/
|
|
int mbedtls_internal_ecp_add_mixed(const mbedtls_ecp_group *grp,
|
|
mbedtls_ecp_point *R, const mbedtls_ecp_point *P,
|
|
const mbedtls_ecp_point *Q);
|
|
#endif
|
|
|
|
/**
|
|
* \brief Point doubling R = 2 P, Jacobian coordinates.
|
|
*
|
|
* Cost: 1D := 3M + 4S (A == 0)
|
|
* 4M + 4S (A == -3)
|
|
* 3M + 6S + 1a otherwise
|
|
* when the implementation is based on the "dbl-1998-cmo-2"
|
|
* doubling formulas in [8] and standard optimizations are
|
|
* applied when curve parameter A is one of { 0, -3 }.
|
|
*
|
|
* \param grp Pointer to the group representing the curve.
|
|
*
|
|
* \param R Pointer to a point structure to hold the result.
|
|
*
|
|
* \param P Pointer to the point that has to be doubled, given with
|
|
* Jacobian coordinates.
|
|
*
|
|
* \return 0 if successful.
|
|
*/
|
|
#if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
|
|
int mbedtls_internal_ecp_double_jac(const mbedtls_ecp_group *grp,
|
|
mbedtls_ecp_point *R, const mbedtls_ecp_point *P);
|
|
#endif
|
|
|
|
/**
|
|
* \brief Normalize jacobian coordinates of an array of (pointers to)
|
|
* points.
|
|
*
|
|
* Using Montgomery's trick to perform only one inversion mod P
|
|
* the cost is:
|
|
* 1N(t) := 1I + (6t - 3)M + 1S
|
|
* (See for example Algorithm 10.3.4. in [9])
|
|
*
|
|
* This function is used only as a subrutine of
|
|
* ecp_mul_comb().
|
|
*
|
|
* Warning: fails (returning an error) if one of the points is
|
|
* zero!
|
|
* This should never happen, see choice of w in ecp_mul_comb().
|
|
*
|
|
* \param grp Pointer to the group representing the curve.
|
|
*
|
|
* \param T Array of pointers to the points to normalise.
|
|
*
|
|
* \param t_len Number of elements in the array.
|
|
*
|
|
* \return 0 if successful,
|
|
* an error if one of the points is zero.
|
|
*/
|
|
#if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
|
|
int mbedtls_internal_ecp_normalize_jac_many(const mbedtls_ecp_group *grp,
|
|
mbedtls_ecp_point *T[], size_t t_len);
|
|
#endif
|
|
|
|
/**
|
|
* \brief Normalize jacobian coordinates so that Z == 0 || Z == 1.
|
|
*
|
|
* Cost in field operations if done by [5] 3.2.1:
|
|
* 1N := 1I + 3M + 1S
|
|
*
|
|
* \param grp Pointer to the group representing the curve.
|
|
*
|
|
* \param pt pointer to the point to be normalised. This is an
|
|
* input/output parameter.
|
|
*
|
|
* \return 0 if successful.
|
|
*/
|
|
#if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
|
|
int mbedtls_internal_ecp_normalize_jac(const mbedtls_ecp_group *grp,
|
|
mbedtls_ecp_point *pt);
|
|
#endif
|
|
|
|
#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
|
|
|
|
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
|
|
|
|
#if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
|
|
int mbedtls_internal_ecp_double_add_mxz(const mbedtls_ecp_group *grp,
|
|
mbedtls_ecp_point *R,
|
|
mbedtls_ecp_point *S,
|
|
const mbedtls_ecp_point *P,
|
|
const mbedtls_ecp_point *Q,
|
|
const mbedtls_mpi *d);
|
|
#endif
|
|
|
|
/**
|
|
* \brief Randomize projective x/z coordinates:
|
|
* (X, Z) -> (l X, l Z) for random l
|
|
*
|
|
* \param grp pointer to the group representing the curve
|
|
*
|
|
* \param P the point on the curve to be randomised given with
|
|
* projective coordinates. This is an input/output parameter.
|
|
*
|
|
* \param f_rng a function pointer to the random number generator
|
|
*
|
|
* \param p_rng a pointer to the random number generator state
|
|
*
|
|
* \return 0 if successful
|
|
*/
|
|
#if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
|
|
int mbedtls_internal_ecp_randomize_mxz(const mbedtls_ecp_group *grp,
|
|
mbedtls_ecp_point *P, int (*f_rng)(void *,
|
|
unsigned char *,
|
|
size_t),
|
|
void *p_rng);
|
|
#endif
|
|
|
|
/**
|
|
* \brief Normalize Montgomery x/z coordinates: X = X/Z, Z = 1.
|
|
*
|
|
* \param grp pointer to the group representing the curve
|
|
*
|
|
* \param P pointer to the point to be normalised. This is an
|
|
* input/output parameter.
|
|
*
|
|
* \return 0 if successful
|
|
*/
|
|
#if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
|
|
int mbedtls_internal_ecp_normalize_mxz(const mbedtls_ecp_group *grp,
|
|
mbedtls_ecp_point *P);
|
|
#endif
|
|
|
|
#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
|
|
|
|
#endif /* MBEDTLS_ECP_INTERNAL_ALT */
|
|
|
|
#endif /* ecp_internal_alt.h */
|