mirror of
https://github.com/Detanup01/gbe_fork.git
synced 2025-01-12 18:39:32 +08:00
75e6d7c8ab
* + revert the change to SetProduct() and SetGameDescription() * + less verbose return in Steam_GameServer::BSecure() * + add missing note in ReadMe about libssq
549 lines
23 KiB
C++
549 lines
23 KiB
C++
/* Copyright (C) 2019 Mr Goldberg
|
|
This file is part of the Goldberg Emulator
|
|
|
|
The Goldberg Emulator is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 3 of the License, or (at your option) any later version.
|
|
|
|
The Goldberg Emulator is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the Goldberg Emulator; if not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "base.h"
|
|
|
|
#include "appticket.h"
|
|
|
|
class Steam_User :
|
|
public ISteamUser009,
|
|
public ISteamUser010,
|
|
public ISteamUser011,
|
|
public ISteamUser012,
|
|
public ISteamUser013,
|
|
public ISteamUser014,
|
|
public ISteamUser015,
|
|
public ISteamUser016,
|
|
public ISteamUser017,
|
|
public ISteamUser018,
|
|
public ISteamUser019,
|
|
public ISteamUser020,
|
|
public ISteamUser021,
|
|
public ISteamUser
|
|
{
|
|
Settings *settings;
|
|
class Networking *network;
|
|
class SteamCallBacks *callbacks;
|
|
class SteamCallResults *callback_results;
|
|
Local_Storage *local_storage;
|
|
|
|
bool recording = false;
|
|
std::chrono::high_resolution_clock::time_point last_get_voice;
|
|
std::string encrypted_app_ticket;
|
|
Auth_Ticket_Manager *ticket_manager;
|
|
|
|
public:
|
|
|
|
Steam_User(Settings *settings, Local_Storage *local_storage, class Networking *network, class SteamCallResults *callback_results, class SteamCallBacks *callbacks)
|
|
{
|
|
this->settings = settings;
|
|
this->local_storage = local_storage;
|
|
this->network = network;
|
|
this->callbacks = callbacks;
|
|
this->callback_results = callback_results;
|
|
recording = false;
|
|
ticket_manager = new Auth_Ticket_Manager(settings, network, callbacks);
|
|
}
|
|
|
|
~Steam_User()
|
|
{
|
|
delete ticket_manager;
|
|
}
|
|
|
|
// returns the HSteamUser this interface represents
|
|
// this is only used internally by the API, and by a few select interfaces that support multi-user
|
|
HSteamUser GetHSteamUser()
|
|
{
|
|
PRINT_DEBUG("GetHSteamUser\n");
|
|
return CLIENT_HSTEAMUSER;
|
|
}
|
|
|
|
// returns true if the Steam client current has a live connection to the Steam servers.
|
|
// If false, it means there is no active connection due to either a networking issue on the local machine, or the Steam server is down/busy.
|
|
// The Steam client will automatically be trying to recreate the connection as often as possible.
|
|
bool BLoggedOn()
|
|
{
|
|
PRINT_DEBUG("BLoggedOn\n");
|
|
return !settings->is_offline();
|
|
}
|
|
|
|
// returns the CSteamID of the account currently logged into the Steam client
|
|
// a CSteamID is a unique identifier for an account, and used to differentiate users in all parts of the Steamworks API
|
|
CSteamID GetSteamID()
|
|
{
|
|
PRINT_DEBUG("Steam_User::GetSteamID\n");
|
|
CSteamID id = settings->get_local_steam_id();
|
|
|
|
return id;
|
|
}
|
|
|
|
// Multiplayer Authentication functions
|
|
|
|
// InitiateGameConnection() starts the state machine for authenticating the game client with the game server
|
|
// It is the client portion of a three-way handshake between the client, the game server, and the steam servers
|
|
//
|
|
// Parameters:
|
|
// void *pAuthBlob - a pointer to empty memory that will be filled in with the authentication token.
|
|
// int cbMaxAuthBlob - the number of bytes of allocated memory in pBlob. Should be at least 2048 bytes.
|
|
// CSteamID steamIDGameServer - the steamID of the game server, received from the game server by the client
|
|
// CGameID gameID - the ID of the current game. For games without mods, this is just CGameID( <appID> )
|
|
// uint32 unIPServer, uint16 usPortServer - the IP address of the game server
|
|
// bool bSecure - whether or not the client thinks that the game server is reporting itself as secure (i.e. VAC is running)
|
|
//
|
|
// return value - returns the number of bytes written to pBlob. If the return is 0, then the buffer passed in was too small, and the call has failed
|
|
// The contents of pBlob should then be sent to the game server, for it to use to complete the authentication process.
|
|
|
|
//steam returns 206 bytes
|
|
#define INITIATE_GAME_CONNECTION_TICKET_SIZE 206
|
|
|
|
int InitiateGameConnection( void *pAuthBlob, int cbMaxAuthBlob, CSteamID steamIDGameServer, uint32 unIPServer, uint16 usPortServer, bool bSecure )
|
|
{
|
|
PRINT_DEBUG("InitiateGameConnection %i %llu %u %u %u\n", cbMaxAuthBlob, steamIDGameServer.ConvertToUint64(), unIPServer, usPortServer, bSecure);
|
|
std::lock_guard<std::recursive_mutex> lock(global_mutex);
|
|
if (cbMaxAuthBlob < INITIATE_GAME_CONNECTION_TICKET_SIZE) return 0;
|
|
uint32 out_size = INITIATE_GAME_CONNECTION_TICKET_SIZE;
|
|
ticket_manager->getTicketData(pAuthBlob, INITIATE_GAME_CONNECTION_TICKET_SIZE, &out_size);
|
|
return out_size;
|
|
}
|
|
|
|
int InitiateGameConnection( void *pAuthBlob, int cbMaxAuthBlob, CSteamID steamIDGameServer, CGameID gameID, uint32 unIPServer, uint16 usPortServer, bool bSecure )
|
|
{
|
|
PRINT_DEBUG("InitiateGameConnection old\n");
|
|
return InitiateGameConnection(pAuthBlob, cbMaxAuthBlob, steamIDGameServer, unIPServer, usPortServer, bSecure);
|
|
}
|
|
|
|
// notify of disconnect
|
|
// needs to occur when the game client leaves the specified game server, needs to match with the InitiateGameConnection() call
|
|
void TerminateGameConnection( uint32 unIPServer, uint16 usPortServer )
|
|
{
|
|
PRINT_DEBUG("TerminateGameConnection\n");
|
|
}
|
|
|
|
// Legacy functions
|
|
|
|
// used by only a few games to track usage events
|
|
void TrackAppUsageEvent( CGameID gameID, int eAppUsageEvent, const char *pchExtraInfo)
|
|
{
|
|
PRINT_DEBUG("TrackAppUsageEvent\n");
|
|
}
|
|
|
|
void RefreshSteam2Login()
|
|
{
|
|
PRINT_DEBUG("RefreshSteam2Login\n");
|
|
}
|
|
|
|
// get the local storage folder for current Steam account to write application data, e.g. save games, configs etc.
|
|
// this will usually be something like "C:\Progam Files\Steam\userdata\<SteamID>\<AppID>\local"
|
|
bool GetUserDataFolder( char *pchBuffer, int cubBuffer )
|
|
{
|
|
PRINT_DEBUG("GetUserDataFolder\n");
|
|
if (!cubBuffer) return false;
|
|
|
|
std::string user_data = local_storage->get_path(Local_Storage::user_data_storage);
|
|
strncpy(pchBuffer, user_data.c_str(), cubBuffer - 1);
|
|
pchBuffer[cubBuffer - 1] = 0;
|
|
return true;
|
|
}
|
|
|
|
// Starts voice recording. Once started, use GetVoice() to get the data
|
|
void StartVoiceRecording( )
|
|
{
|
|
PRINT_DEBUG("StartVoiceRecording\n");
|
|
last_get_voice = std::chrono::high_resolution_clock::now();
|
|
recording = true;
|
|
//TODO:fix
|
|
recording = false;
|
|
}
|
|
|
|
// Stops voice recording. Because people often release push-to-talk keys early, the system will keep recording for
|
|
// a little bit after this function is called. GetVoice() should continue to be called until it returns
|
|
// k_eVoiceResultNotRecording
|
|
void StopVoiceRecording( )
|
|
{
|
|
PRINT_DEBUG("StopVoiceRecording\n");
|
|
recording = false;
|
|
}
|
|
|
|
// Determine the size of captured audio data that is available from GetVoice.
|
|
// Most applications will only use compressed data and should ignore the other
|
|
// parameters, which exist primarily for backwards compatibility. See comments
|
|
// below for further explanation of "uncompressed" data.
|
|
EVoiceResult GetAvailableVoice( uint32 *pcbCompressed, uint32 *pcbUncompressed_Deprecated, uint32 nUncompressedVoiceDesiredSampleRate_Deprecated )
|
|
{
|
|
PRINT_DEBUG("GetAvailableVoice\n");
|
|
if (pcbCompressed) *pcbCompressed = 0;
|
|
if (pcbUncompressed_Deprecated) *pcbUncompressed_Deprecated = 0;
|
|
if (!recording) return k_EVoiceResultNotRecording;
|
|
double seconds = std::chrono::duration_cast<std::chrono::duration<double>>(std::chrono::high_resolution_clock::now() - last_get_voice).count();
|
|
if (pcbCompressed) *pcbCompressed = seconds * 1024.0 * 64.0 / 8.0;
|
|
if (pcbUncompressed_Deprecated) *pcbUncompressed_Deprecated = seconds * (double)nUncompressedVoiceDesiredSampleRate_Deprecated * 2.0;
|
|
|
|
return k_EVoiceResultOK;
|
|
}
|
|
|
|
EVoiceResult GetAvailableVoice(uint32 *pcbCompressed, uint32 *pcbUncompressed)
|
|
{
|
|
PRINT_DEBUG("GetAvailableVoice old\n");
|
|
return GetAvailableVoice(pcbCompressed, pcbUncompressed, 11025);
|
|
}
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// NOTE: "uncompressed" audio is a deprecated feature and should not be used
|
|
// by most applications. It is raw single-channel 16-bit PCM wave data which
|
|
// may have been run through preprocessing filters and/or had silence removed,
|
|
// so the uncompressed audio could have a shorter duration than you expect.
|
|
// There may be no data at all during long periods of silence. Also, fetching
|
|
// uncompressed audio will cause GetVoice to discard any leftover compressed
|
|
// audio, so you must fetch both types at once. Finally, GetAvailableVoice is
|
|
// not precisely accurate when the uncompressed size is requested. So if you
|
|
// really need to use uncompressed audio, you should call GetVoice frequently
|
|
// with two very large (20kb+) output buffers instead of trying to allocate
|
|
// perfectly-sized buffers. But most applications should ignore all of these
|
|
// details and simply leave the "uncompressed" parameters as NULL/zero.
|
|
// ---------------------------------------------------------------------------
|
|
|
|
// Read captured audio data from the microphone buffer. This should be called
|
|
// at least once per frame, and preferably every few milliseconds, to keep the
|
|
// microphone input delay as low as possible. Most applications will only use
|
|
// compressed data and should pass NULL/zero for the "uncompressed" parameters.
|
|
// Compressed data can be transmitted by your application and decoded into raw
|
|
// using the DecompressVoice function below.
|
|
EVoiceResult GetVoice( bool bWantCompressed, void *pDestBuffer, uint32 cbDestBufferSize, uint32 *nBytesWritten, bool bWantUncompressed_Deprecated, void *pUncompressedDestBuffer_Deprecated , uint32 cbUncompressedDestBufferSize_Deprecated , uint32 *nUncompressBytesWritten_Deprecated , uint32 nUncompressedVoiceDesiredSampleRate_Deprecated )
|
|
{
|
|
PRINT_DEBUG("GetVoice\n");
|
|
if (!recording) return k_EVoiceResultNotRecording;
|
|
double seconds = std::chrono::duration_cast<std::chrono::duration<double>>(std::chrono::high_resolution_clock::now() - last_get_voice).count();
|
|
if (bWantCompressed) {
|
|
uint32 towrite = seconds * 1024.0 * 64.0 / 8.0;
|
|
if (cbDestBufferSize < towrite) towrite = cbDestBufferSize;
|
|
if (pDestBuffer) memset(pDestBuffer, 0, towrite);
|
|
if (nBytesWritten) *nBytesWritten = towrite;
|
|
}
|
|
|
|
if (bWantUncompressed_Deprecated) {
|
|
PRINT_DEBUG("Wanted Uncompressed\n");
|
|
}
|
|
|
|
last_get_voice = std::chrono::high_resolution_clock::now();
|
|
return k_EVoiceResultOK;
|
|
}
|
|
|
|
EVoiceResult GetVoice( bool bWantCompressed, void *pDestBuffer, uint32 cbDestBufferSize, uint32 *nBytesWritten, bool bWantUncompressed, void *pUncompressedDestBuffer, uint32 cbUncompressedDestBufferSize, uint32 *nUncompressBytesWritten )
|
|
{
|
|
PRINT_DEBUG("GetVoice old\n");
|
|
return GetVoice(bWantCompressed, pDestBuffer, cbDestBufferSize, nBytesWritten, bWantUncompressed, pUncompressedDestBuffer, cbUncompressedDestBufferSize, nUncompressBytesWritten, 11025);
|
|
}
|
|
|
|
EVoiceResult GetCompressedVoice( void *pDestBuffer, uint32 cbDestBufferSize, uint32 *nBytesWritten )
|
|
{
|
|
PRINT_DEBUG("GetCompressedVoice\n");
|
|
return GetVoice(true, pDestBuffer, cbDestBufferSize, nBytesWritten, false, NULL, 0, NULL);
|
|
}
|
|
|
|
// Decodes the compressed voice data returned by GetVoice. The output data is
|
|
// raw single-channel 16-bit PCM audio. The decoder supports any sample rate
|
|
// from 11025 to 48000; see GetVoiceOptimalSampleRate() below for details.
|
|
// If the output buffer is not large enough, then *nBytesWritten will be set
|
|
// to the required buffer size, and k_EVoiceResultBufferTooSmall is returned.
|
|
// It is suggested to start with a 20kb buffer and reallocate as necessary.
|
|
EVoiceResult DecompressVoice( const void *pCompressed, uint32 cbCompressed, void *pDestBuffer, uint32 cbDestBufferSize, uint32 *nBytesWritten, uint32 nDesiredSampleRate )
|
|
{
|
|
PRINT_DEBUG("DecompressVoice\n");
|
|
if (!recording) return k_EVoiceResultNotRecording;
|
|
uint32 uncompressed = (double)cbCompressed * ((double)nDesiredSampleRate / 8192.0);
|
|
if(nBytesWritten) *nBytesWritten = uncompressed;
|
|
if (uncompressed > cbDestBufferSize) uncompressed = cbDestBufferSize;
|
|
if (pDestBuffer) memset(pDestBuffer, 0, uncompressed);
|
|
|
|
return k_EVoiceResultOK;
|
|
}
|
|
|
|
EVoiceResult DecompressVoice( const void *pCompressed, uint32 cbCompressed, void *pDestBuffer, uint32 cbDestBufferSize, uint32 *nBytesWritten )
|
|
{
|
|
PRINT_DEBUG("DecompressVoice old\n");
|
|
return DecompressVoice(pCompressed, cbCompressed, pDestBuffer, cbDestBufferSize, nBytesWritten, 11025);
|
|
}
|
|
|
|
EVoiceResult DecompressVoice( void *pCompressed, uint32 cbCompressed, void *pDestBuffer, uint32 cbDestBufferSize, uint32 *nBytesWritten )
|
|
{
|
|
PRINT_DEBUG("DecompressVoice older\n");
|
|
return DecompressVoice(pCompressed, cbCompressed, pDestBuffer, cbDestBufferSize, nBytesWritten, 11025);
|
|
}
|
|
|
|
// This returns the native sample rate of the Steam voice decompressor
|
|
// this sample rate for DecompressVoice will perform the least CPU processing.
|
|
// However, the final audio quality will depend on how well the audio device
|
|
// (and/or your application's audio output SDK) deals with lower sample rates.
|
|
// You may find that you get the best audio output quality when you ignore
|
|
// this function and use the native sample rate of your audio output device,
|
|
// which is usually 48000 or 44100.
|
|
uint32 GetVoiceOptimalSampleRate()
|
|
{
|
|
PRINT_DEBUG("GetVoiceOptimalSampleRate\n");
|
|
return 48000;
|
|
}
|
|
|
|
// Retrieve ticket to be sent to the entity who wishes to authenticate you.
|
|
// pcbTicket retrieves the length of the actual ticket.
|
|
HAuthTicket GetAuthSessionTicket( void *pTicket, int cbMaxTicket, uint32 *pcbTicket )
|
|
{
|
|
return GetAuthSessionTicket(pTicket, cbMaxTicket, pcbTicket, NULL);
|
|
}
|
|
// SteamNetworkingIdentity is an optional input parameter to hold the public IP address or SteamID of the entity you are connecting to
|
|
// if an IP address is passed Steam will only allow the ticket to be used by an entity with that IP address
|
|
// if a Steam ID is passed Steam will only allow the ticket to be used by that Steam ID
|
|
HAuthTicket GetAuthSessionTicket( void *pTicket, int cbMaxTicket, uint32 *pcbTicket, const SteamNetworkingIdentity *pSteamNetworkingIdentity )
|
|
{
|
|
PRINT_DEBUG("Steam_User::GetAuthSessionTicket %i\n", cbMaxTicket);
|
|
std::lock_guard<std::recursive_mutex> lock(global_mutex);
|
|
|
|
return ticket_manager->getTicket(pTicket, cbMaxTicket, pcbTicket);
|
|
}
|
|
|
|
// Request a ticket which will be used for webapi "ISteamUserAuth\AuthenticateUserTicket"
|
|
// pchIdentity is an optional input parameter to identify the service the ticket will be sent to
|
|
// the ticket will be returned in callback GetTicketForWebApiResponse_t
|
|
HAuthTicket GetAuthTicketForWebApi( const char *pchIdentity )
|
|
{
|
|
PRINT_DEBUG("Steam_User::GetAuthTicketForWebApi %s\n", pchIdentity);
|
|
std::lock_guard<std::recursive_mutex> lock(global_mutex);
|
|
|
|
return ticket_manager->getWebApiTicket(pchIdentity);
|
|
}
|
|
|
|
// Authenticate ticket from entity steamID to be sure it is valid and isnt reused
|
|
// Registers for callbacks if the entity goes offline or cancels the ticket ( see ValidateAuthTicketResponse_t callback and EAuthSessionResponse )
|
|
EBeginAuthSessionResult BeginAuthSession( const void *pAuthTicket, int cbAuthTicket, CSteamID steamID )
|
|
{
|
|
PRINT_DEBUG("Steam_User::BeginAuthSession %i %llu\n", cbAuthTicket, steamID.ConvertToUint64());
|
|
std::lock_guard<std::recursive_mutex> lock(global_mutex);
|
|
|
|
return ticket_manager->beginAuth(pAuthTicket, cbAuthTicket, steamID);
|
|
}
|
|
|
|
// Stop tracking started by BeginAuthSession - called when no longer playing game with this entity
|
|
void EndAuthSession( CSteamID steamID )
|
|
{
|
|
PRINT_DEBUG("Steam_User::EndAuthSession\n");
|
|
std::lock_guard<std::recursive_mutex> lock(global_mutex);
|
|
|
|
ticket_manager->endAuth(steamID);
|
|
}
|
|
|
|
// Cancel auth ticket from GetAuthSessionTicket, called when no longer playing game with the entity you gave the ticket to
|
|
void CancelAuthTicket( HAuthTicket hAuthTicket )
|
|
{
|
|
PRINT_DEBUG("Steam_User::CancelAuthTicket\n");
|
|
std::lock_guard<std::recursive_mutex> lock(global_mutex);
|
|
|
|
ticket_manager->cancelTicket(hAuthTicket);
|
|
}
|
|
|
|
// After receiving a user's authentication data, and passing it to BeginAuthSession, use this function
|
|
// to determine if the user owns downloadable content specified by the provided AppID.
|
|
EUserHasLicenseForAppResult UserHasLicenseForApp( CSteamID steamID, AppId_t appID )
|
|
{
|
|
PRINT_DEBUG("Steam_User::UserHasLicenseForApp\n");
|
|
return k_EUserHasLicenseResultHasLicense;
|
|
}
|
|
|
|
// returns true if this users looks like they are behind a NAT device. Only valid once the user has connected to steam
|
|
// (i.e a SteamServersConnected_t has been issued) and may not catch all forms of NAT.
|
|
bool BIsBehindNAT()
|
|
{
|
|
PRINT_DEBUG("BIsBehindNAT\n");
|
|
return false;
|
|
}
|
|
|
|
// set data to be replicated to friends so that they can join your game
|
|
// CSteamID steamIDGameServer - the steamID of the game server, received from the game server by the client
|
|
// uint32 unIPServer, uint16 usPortServer - the IP address of the game server
|
|
void AdvertiseGame( CSteamID steamIDGameServer, uint32 unIPServer, uint16 usPortServer )
|
|
{
|
|
PRINT_DEBUG("AdvertiseGame\n");
|
|
std::lock_guard<std::recursive_mutex> lock(global_mutex);
|
|
Gameserver *server = new Gameserver();
|
|
server->set_id(steamIDGameServer.ConvertToUint64());
|
|
server->set_ip(unIPServer);
|
|
server->set_port(usPortServer);
|
|
server->set_query_port(usPortServer);
|
|
server->set_appid(settings->get_local_game_id().ToUint64());
|
|
server->set_type(eFriendsServer);
|
|
Common_Message msg;
|
|
msg.set_allocated_gameserver(server);
|
|
msg.set_source_id(settings->get_local_steam_id().ConvertToUint64());
|
|
network->sendToAllIndividuals(&msg, true);
|
|
}
|
|
|
|
// Requests a ticket encrypted with an app specific shared key
|
|
// pDataToInclude, cbDataToInclude will be encrypted into the ticket
|
|
// ( This is asynchronous, you must wait for the ticket to be completed by the server )
|
|
STEAM_CALL_RESULT( EncryptedAppTicketResponse_t )
|
|
SteamAPICall_t RequestEncryptedAppTicket( void *pDataToInclude, int cbDataToInclude )
|
|
{
|
|
PRINT_DEBUG("Steam_User::RequestEncryptedAppTicket %i\n", cbDataToInclude);
|
|
std::lock_guard<std::recursive_mutex> lock(global_mutex);
|
|
EncryptedAppTicketResponse_t data;
|
|
data.m_eResult = k_EResultOK;
|
|
|
|
DecryptedAppTicket ticket;
|
|
ticket.TicketV1.Reset();
|
|
ticket.TicketV2.Reset();
|
|
ticket.TicketV4.Reset();
|
|
|
|
ticket.TicketV1.TicketVersion = 1;
|
|
if (pDataToInclude) {
|
|
ticket.TicketV1.UserData.assign((uint8_t*)pDataToInclude, (uint8_t*)pDataToInclude + cbDataToInclude);
|
|
}
|
|
|
|
ticket.TicketV2.TicketVersion = 4;
|
|
ticket.TicketV2.SteamID = settings->get_local_steam_id().ConvertToUint64();
|
|
ticket.TicketV2.TicketIssueTime = std::chrono::duration_cast<std::chrono::seconds>(std::chrono::system_clock::now().time_since_epoch()).count();
|
|
ticket.TicketV2.TicketValidityEnd = ticket.TicketV2.TicketIssueTime + (21 * 24 * 60 * 60);
|
|
|
|
for (int i = 0; i < 140; ++i)
|
|
{
|
|
AppId_t appid;
|
|
bool available;
|
|
std::string name;
|
|
if (!settings->getDLC(appid, appid, available, name)) break;
|
|
ticket.TicketV4.AppIDs.emplace_back(appid);
|
|
}
|
|
|
|
ticket.TicketV4.HasVACStatus = true;
|
|
ticket.TicketV4.VACStatus = 0;
|
|
|
|
auto serialized = ticket.SerializeTicket();
|
|
|
|
SteamAppTicket_pb pb;
|
|
pb.set_ticket_version_no(1);
|
|
pb.set_crc_encryptedticket(0); // TODO: Find out how to compute the CRC
|
|
pb.set_cb_encrypteduserdata(cbDataToInclude);
|
|
pb.set_cb_encrypted_appownershipticket(serialized.size() - 16);
|
|
pb.mutable_encrypted_ticket()->assign(serialized.begin(), serialized.end()); // TODO: Find how to encrypt datas
|
|
|
|
encrypted_app_ticket = pb.SerializeAsString();
|
|
|
|
return callback_results->addCallResult(data.k_iCallback, &data, sizeof(data));
|
|
}
|
|
|
|
// retrieve a finished ticket
|
|
bool GetEncryptedAppTicket( void *pTicket, int cbMaxTicket, uint32 *pcbTicket )
|
|
{
|
|
PRINT_DEBUG("Steam_User::GetEncryptedAppTicket %i\n", cbMaxTicket);
|
|
unsigned int ticket_size = encrypted_app_ticket.size();
|
|
if (!cbMaxTicket) {
|
|
if (!pcbTicket) return false;
|
|
*pcbTicket = ticket_size;
|
|
return true;
|
|
}
|
|
|
|
if (!pTicket) return false;
|
|
if (ticket_size > cbMaxTicket) return false;
|
|
encrypted_app_ticket.copy((char *)pTicket, cbMaxTicket);
|
|
if (pcbTicket) *pcbTicket = ticket_size;
|
|
|
|
return true;
|
|
}
|
|
|
|
// Trading Card badges data access
|
|
// if you only have one set of cards, the series will be 1
|
|
// the user has can have two different badges for a series; the regular (max level 5) and the foil (max level 1)
|
|
int GetGameBadgeLevel( int nSeries, bool bFoil )
|
|
{
|
|
PRINT_DEBUG("GetGameBadgeLevel\n");
|
|
return 0;
|
|
}
|
|
|
|
// gets the Steam Level of the user, as shown on their profile
|
|
int GetPlayerSteamLevel()
|
|
{
|
|
PRINT_DEBUG("GetPlayerSteamLevel\n");
|
|
return 100;
|
|
}
|
|
|
|
// Requests a URL which authenticates an in-game browser for store check-out,
|
|
// and then redirects to the specified URL. As long as the in-game browser
|
|
// accepts and handles session cookies, Steam microtransaction checkout pages
|
|
// will automatically recognize the user instead of presenting a login page.
|
|
// The result of this API call will be a StoreAuthURLResponse_t callback.
|
|
// NOTE: The URL has a very short lifetime to prevent history-snooping attacks,
|
|
// so you should only call this API when you are about to launch the browser,
|
|
// or else immediately navigate to the result URL using a hidden browser window.
|
|
// NOTE 2: The resulting authorization cookie has an expiration time of one day,
|
|
// so it would be a good idea to request and visit a new auth URL every 12 hours.
|
|
STEAM_CALL_RESULT( StoreAuthURLResponse_t )
|
|
SteamAPICall_t RequestStoreAuthURL( const char *pchRedirectURL )
|
|
{
|
|
PRINT_DEBUG("RequestStoreAuthURL\n");
|
|
return 0;
|
|
}
|
|
|
|
// gets whether the users phone number is verified
|
|
bool BIsPhoneVerified()
|
|
{
|
|
PRINT_DEBUG("BIsPhoneVerified\n");
|
|
return true;
|
|
}
|
|
|
|
// gets whether the user has two factor enabled on their account
|
|
bool BIsTwoFactorEnabled()
|
|
{
|
|
PRINT_DEBUG("BIsTwoFactorEnabled\n");
|
|
return true;
|
|
}
|
|
|
|
// gets whether the users phone number is identifying
|
|
bool BIsPhoneIdentifying()
|
|
{
|
|
PRINT_DEBUG("BIsPhoneIdentifying\n");
|
|
return false;
|
|
}
|
|
|
|
// gets whether the users phone number is awaiting (re)verification
|
|
bool BIsPhoneRequiringVerification()
|
|
{
|
|
PRINT_DEBUG("BIsPhoneRequiringVerification\n");
|
|
return false;
|
|
}
|
|
|
|
STEAM_CALL_RESULT( MarketEligibilityResponse_t )
|
|
SteamAPICall_t GetMarketEligibility()
|
|
{
|
|
PRINT_DEBUG("GetMarketEligibility\n");
|
|
return 0;
|
|
}
|
|
|
|
// Retrieves anti indulgence / duration control for current user
|
|
STEAM_CALL_RESULT( DurationControl_t )
|
|
SteamAPICall_t GetDurationControl()
|
|
{
|
|
PRINT_DEBUG("GetDurationControl\n");
|
|
return 0;
|
|
}
|
|
|
|
// Advise steam china duration control system about the online state of the game.
|
|
// This will prevent offline gameplay time from counting against a user's
|
|
// playtime limits.
|
|
bool BSetDurationControlOnlineState( EDurationControlOnlineState eNewState )
|
|
{
|
|
PRINT_DEBUG("BSetDurationControlOnlineState\n");
|
|
return false;
|
|
}
|
|
|
|
};
|